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Abstract. Adverse drug reaction is a major public health issue. The increasing 
availability of medico-administrative databases offers major opportunities to detect 

real-life pharmacovigilance signals. We have recently adapted a pharmaco-

epidemiological method to the large dimension, the WCE (Weigthed Cumulative 
Exposure) statistical model, which makes it possible to model the temporal 

relationship between the prescription of a drug and the appearance of a side effect 

without any a priori hypothesis. Unfortunately, this method faces a computational 
time problem. The objective of this paper is to describe the implementation of the 

WCE statistical model using Graphics Processing Unit (GPU) programming as a 

tool to obtain the spectrum of adverse drug reactions from medico-administrative 
databases. The process is divided into three steps: pre-processing of care pathways 

using the Python library Panda, calculation of temporal co-variables using the 

Python library "KeOps", estimation of the model parameters using the Python 
library "PyTorch" - standard in deep learning. Programming the WCE method by 

distributing the heaviest portions (notably spline calculation) on the GPU makes it 

possible to accelerate the time required for this method by 1000 times using a 
computer graphics card and up to 10,000 times with a GPU server.  This 

implementation makes it possible to use WCE on all the drugs on the market to study 

their spectrum of adverse effects, to highlight new vigilance signals and thus to have 
a global vigilance tool on medico-administrative database. This is a proof of concept 

for the use of this technology in epidemiology. 
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1. Introduction 

Adverse drug reaction is a major public health issue. A recent study by Makary [1], in 

2016, places drug-related iatrogeny as the 3rd leading cause of death in the United States. 

Currently, post-marketing surveillance of drugs is carried out by a pharmacovigilance 

system, which is based on spontaneous reports from healthcare professionals, 

pharmaceutical companies and patients. However, this system suffers from under-

reporting, with less than 10% of serious adverse reactions being reported [2], and is 
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subject to bias due to selective reporting. Most of the reported cases are considered as 

suspected adverse reactions. The increasing availability of medico-administrative 

databases offers major opportunities to detect real-life pharmacovigilance signals [3]. 

However, these databases have mainly been used to confirm or refute potential signals 

reported [4]. It would be very appropriate to use these databases not to confirm a 

suspected adverse reaction but to generate adverse reaction signals. The challenge in 

developing a real-life pharmacovigilance signal detection method presents two 

difficulties: (a) The choice of a powerful method that can detect a signal among a very 

large number of drugs and therefore face the problem of multiple tests and therefore the 

generation of potential false positives, but also face problems of computer resources. (b) 

Taking into account the temporal heterogeneity of the link between drug intake and 

adverse effects, which may appear in the short or medium term depending on the 

pathophysiological mechanism causing the adverse effect.  

Over the last decade, several international initiatives have worked on the 

development of pharmacoepidemiology tools: Mini-Sentinel [5], Observational Medical 

Outcomes Partnership [6], Pharmaco-epidemiological Research on Outcomes of 

Therapeutics by a European Consortium [7], Exploring and Understanding Adverse 

Drug Reactions [8], and the Asian Pharmacoepidemiology Network [9]. The methods 

compared in these working groups are methods using pharmacovigilance feedback 

databases (not exhaustive) or so-called "single-candidate" methods, i.e. methods that 

seek to prove or disprove a hypothesis. These methods do not address our signal detection 

problem. We have recently adapted a pharmaco-epidemiological method to the large 

dimension, the WCE (Weigthed Cumulative Exposure) statistical model [10], which 

makes it possible to model the temporal relationship between the prescription of a drug 

and the appearance of a side effect without any a priori hypothesis [11], taking into 

account the temporal heterogeneity described below. Unfortunately, this method faces a 

computational time problem.  

Since 2007, Nvidia has been developing CUDA (originally an acronym for Compute 

Unified Device Architecture), which is a technology that uses a graphics processing unit 

(GPU) to perform general purpose computations in place of the processor (CPU), thus 

speeding up calculations. No methods in epidemiology have been implemented with this 

technology yet, although it has become widely used in other sectors [12]. 

The objective of this paper is to describe the implementation of the WCE statistical 

model using GPU programming as a tool to obtain the spectrum of adverse drug reactions 

from medico-administrative databases. 

2. Methods 

2.1. Data-driven WCE 

The time-weighted cumulative exposure (WCE) model is used to estimate the cumulative 

effect of duration, dose and date of prescription of the study drug. The WCE approach 

estimates the effect of past exposure using a time-weighted sum of all previous exposure 

events. The weights depend on the time since exposure and the dose. The WCE model is 

based on a risk function modelled by a spline function and a Cox model with a time-

dependent variable to model exposure to the drug of interest. This allows for adverse 

events that may occur shortly after the start of the study drug or after prolonged exposure. 

Adjustment variables such as age and gender can be introduced.  
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The method for estimating the parameters of the WCE model works in two steps. 

First, the parameters of the risk function are estimated and then the parameters of the 

Cox model are estimated. The risk function is estimated from the set of patients exposed 

to the study drug and will be different depending on the drug and/or the event. From this 

risk function, the WCE model, in a second step, calculates, based on a Cox model, the 

risk of having the event being exposed to the study drug. The event in our model can be 

the prescription of another drug, a hospitalization, an illness or a hybrid drug-disease 

event. 

We adapted WCE to an approach without a priori hypothesis by proposing to take 

into account the multiple tests performed via a bootstrap approach. In the framework of 

the data-driven WCE extension, the precise consideration of the temporal aspect in the 

WCE model allows for a good ratio of true positives to false positives in the framework 

of an approach without a priori hypothesis. The current limitation of this method is its 

computation time. 

In comparison, the most commonly used pharmacovigilance signal detection 

methods (without a priori hypothesis) are signal disproportionality methods. These 

methods roughly take into account the temporal aspect of the prescription of the drug 

(before/after the studied event) and generate many false positives. 

2.2. WCE implementation on GPU 

The process is divided into three steps: 

 

� Pre-processing of care pathways using the Python library "Panda" - standard for 

processing tabular data (https://pandas.pydata.org/). Our raw data describes the 

set of prescriptions associated with a patient population. We extract a list of 

"times of interest" which correspond to the first intake of selected drugs, used 

as proxies for adverse side effects. 

� Calculation of temporal co-variables using the Python library "KeOps" 

(https://www.kernel-operations.io). For each time of interest, the prior exposure 

to the study drug ("suspect") is quantified using correlations with temporal 

filters - in the example of the original WCE model, these are B-spline functions. 

The computation of these "temporal co-variables" is efficiently performed using 

the KeOps library's "block" reduction operations, which distribute the patients 

over the thousands of cores of our graphics cards. 

� Estimation of the model parameters using the Python library "PyTorch" - 

standard in deep learning (https://pytorch.org/). Given the temporal co-variates 

computed in the previous step, estimating the maximum likelihood for the 

Cox/WCE model corresponds to minimizing a convex function with about ten 

free parameters. We find the solution to this problem using a quasi-Newton 

method (L-BFGS solver with "strong Wolfe" search), which converges in about 

ten iterations. We quantify the uncertainty of our estimator using a bootstrap 

method (N=1,000 to N=10,000 replicates), which is very efficiently 

implemented with PyTorch using a batch dimension. 

We can express the run time of our algorithm as a big O(Its * Drugs * Events * 

Survivors), where Its is the number of iterations in the convex optimizer for the Cox-PH 

problem (at most 100), Drugs is the number of drugs of interest, Events is the number of 

“Death” events - in practice, the prescription of a precise drug that we use as a proxy for 
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the onset of an adverse effect and Survivors is the typical number of patients that do not 

develop the adverse effect. 

This means that the total run time of our method is at most quadratic in the number 

of patients (Events and Survivors are both smaller than the total number of patients) and 

linear in the number of drugs of interest (in practice, 10 to 500). Our GPU 

implementation does not cut this theoretical time complexity since we still perform the 

exact same computations, without any approximation. However, they dramatically 

“improve the constant" by three orders of magnitude. Modern GPUs are made up of 

thousands of cores. 

In practice, the number of patients in our datasets range from 100k to 100M - with 

an understanding that we always extract subsets that correspond to prescription 

subgroups. As a consequence, the number of operations required to train our model 

ranges from about 100 * 100 * 100k * 100k = 10^14 to at most 100 * 100 * 100M * 

100M = 10^20 for a hypothetical ubiquitous drug on a very large population. Modern 

GPUs have a throughput that exceeds 10^12 operations per second: we expect that the 

run times for our method will range from a few seconds on a single GPU (for small 

datasets) to a few days on a GPU cluster (for nation-wide studies on very common drugs). 

3. Results 

In a preliminary work on hydroxychloroquine, the calculation time required for all the 

prescriptions of 2010 patients over 11 years is 5 days (parallelized calculation on a 2.6 

GHz Intel Core i7 6-core processor). To do the same work on 400 ATC classes would 

take us more than 5 years. This method, as it stands, cannot be used, in real time and on 

a routine basis, for pharmacovigilance signal detection. 

Programming the WCE method by distributing the heaviest portions (notably spline 

calculation) on the GPU makes it possible to accelerate the time required for this method 

by 1000 times using a computer graphics card and up to 10,000 times with a GPU server. 

The calculation to identify the spectrum of side effects associated with a drug on a cohort 

of about 2000 patients went from 5 days on CPU to 8 minutes (classic PC) or less than 

48 seconds (GPU server). 

The data driven WCE enabled the identification of eight ATC classes associated 

with the prescription of HCQ. The most relevant drugs were hydrocortisone, alendronic 

acid cholecalciferol, valsartan and chlormadinone. 

The experimental dataset composed of five tables: patient table with 2010 rows, 3 

columns (id_patient, age, sex), size 775KB ; hydroxychloroquine prescription: 50,425 

rows, 3 columns (id_patient, date, ATC_classes), size 1.4MB ; all drug prescriptions: 

1,175.507 rows, 3 columns (id_patient, date, ATC_classes), size 36.2MB ; all medical 

procedures: 190,712 rows, 3 columns (id_patient, date, Code_procedures), size 4.8MB ; 

all medical diagnoses: 48,470 rows, 3 columns (id_patient, date, Code_CIM10), size 

1.5MB. 

4. Discussion 

This paper proposed an implementation of the WCE method using GPU programming 

allowing to considerably accelerate it. This makes it possible to use this method on all 

the drugs on the market to study their spectrum of adverse effects, to highlight new 
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vigilance signals and thus to have a global vigilance tool on medico-administrative 

database. This is a proof of concept for the use of this technology in epidemiology. 

Drug consumption data is remarkably compact and fit without any problem in the 

main "RAM" memory of our GPUs, which have ~24Gb of usable space. As a 

consequence, disk latency is much less of a problem than for e.g. medical imaging studies. 

Going forward, we intend to scale up to full nation-wide studies (~70M patients for the 

full French population, at most ~500M for the US or the European Union), with full files 

that may weigh up to 100Gb. These will fit without problem in the RAM of our 

computers (124Gb) and may be cut into smaller pieces (~1Gb each) to be loaded 

sequentially on the GPU. 

Beyond scaling issues alone, we will seek to extend the WCE model to meet the 

needs of our pharmaco-vigilance analysis. In particular, we will focus on: 

� Patient age management. We will seek to compare standard approaches to 

Cox/WCE models (which treat age as an additional covariate) with an interval 

censoring method (already supported by our Python prototype on the GPU). 

� Handling more advanced assumptions about the shape of risk functions. Beyond 

B-Splines (piecewise polynomial), we will evaluate the influence of positivity 

or convexity assumptions on the relevance of the estimated risk functions. 

� Simultaneous management of several drugs. By exploiting the structure of the 

ATC hierarchical classification, we will seek to go beyond a "parallel" treatment 

of the different drugs chosen. 
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