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Abstract. Background: Deep learning currently struggles with tabular data, but it 
can benefit from multimodal learning. SAINT is a deep learning model for tabular 

data on which we base our presented developments. Objectives: In this study, we 

introduce SAINTENS as a new deep learning method, specifically for the in 
healthcare predominant tabular real world data. Methods: For this purpose, we 

compare SAINTENS with SAINT and the State of the Art Machine Learning 

methods for tabular data. We use tabular data from geriatrics to predict four different 
targets (dysphagia, pressure ulcers, decompensated heart failure and delirium). We 

determine the relevant feature sets and train the models on these sets. Results: Both 

SAINTENS and SAINT models are at least on the same performance level as the 
current State of the Art (Gradient Boosting Decision Trees). Conclusion: In 

combination with multimodal learning SAINTENS and SAINT may be used on real 

world data comprising tabular, text and image data, for discovery and development 
of new digital biomarkers. 
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1. Introduction 

Tabular data is one of the most widely used data types in real-world applications [1,2] 

and is also the major part of electronic health records (EHR) [3]. Large datasets of EHR 

in hospitals can be analyzed effectively with the help of machine learning in order to 

predict unrecognized syndromes and to gain new insights about diseases.  

The motivation behind the development of deep learning approaches for the tabular 

domain is to be able to transfer the success of deep learning in image and language 

domain [4] and to use multimodal learning [4,5]. Different modalities like tables, images 

and text from EHR can be processed with multimodal learning by one Neural Network 

(NN) and this can improve the performance [6] and applicability. 
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1.1. Problems of Deep Learning with Tabular Data 

Deep learning approaches have currently performance problems concerning tabular data, 

especially because of mixed feature types (categorical and continuous variables) [1,4]. 

Further studies also show that some new deep learning methods don’t outperform the 

State of the Art, except their own newly developed methods [7,8]. In addition, the 

combination of missing and noisy data [1,9,10] with sensitive NN [9,11] presents a 

difficulty.  

NN cannot handle categorical features by nature. They need an embedding/encoding 

to transform the categorical into numeric features. There are three different types of 

encodings according to Hancock and Khoshgoftaar [12]: 1. Determined, which encode 

categorical data deterministically and independent of the training of the NN. A very 

common deterministic method is the One-hot encoding [12] 2. Algorithmic, which 

describes a more complex encoding, is not necessary deterministic and is independent of 

the training of NN. 3. Automatic, which is a learned encoding by the NN.  

The deep learning models have to be very robust and need a good embedding of 

heterogeneous data (mixed feature types) into homogenous data (only continuous 

features) to achieve a good performance. 

Recently, several new deep learning approaches for tabular data were published 

[2,5,7,8,13,14]. Those models can be categorized into three different categories [10]: 1. 

The regularization models, 2. The hybrid models and 3. Transformer based models [15]. 

Our work is based on SAINT [5], which is a transformer based model. A very similar 

model to SAINT was published by Kossen et al. [16]. 

1.2. Classical State of the Art (SOTA) for Tabular Data 

The classical SOTA methods in the tabular data domain are Gradient Boosted Decision 

Trees (GBDT) [1,2,4,7] like XgBoost [17], LightGBM [18] and CatBoost [19]. These 

models perform better on heterogeneous datasets (mixed feature types) and worse on 

homogenous datasets in comparison to deep learning approaches [4]. A big issue of these 

models is that they cannot be used for end-to-end learning in a multimodal context. 

Therefore, deep learning approaches are very promising.  

1.3. SAINT: Self-Attention and Intersample Attention Transformer 

SAINT uses self-attention to learn dependencies between features and also intersample 

attention to learn dependencies between samples [5]. The authors of SAINT use a pre-

training procedure with data augmentation in combination with contrastive learning and 

a denoising task [5]. Mixup [20] and Cutmix [21] are used to augment the samples [5]. 

The pre-training procedure is helpful for datasets, where only a small part of data is 

labeled. In such a case, the pre-training procedure can be powerful, because the whole 

dataset can be used to learn a good sample representation. With this, it should be possible 

to impute missing values and ‘denoise’ corrupted values.  In a fine-tuning step, the 

labeled data is used to train the model in a supervised task [5]. To classify the feature 

encoding according to Hancock and Khoshgoftaar [12], SAINT uses an automatic 

encoding. 
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1.4. Limitation of SAINT for Tabular Healthcare Real World Data 

The benchmark datasets, which the authors used in the SAINT paper [5], are not 

appropriate to evaluate the performance of SAINT on real world tabular health data. A 

reason for that is the small amount of datasets with mixed feature types. Moreover, the 

datasets do not consist of missing values by nature. The authors also used a very low α 

for Mixup in the pre-training procedure [5]. Contrastive learning minimizes the distance 

between the SAINT sample representation and the augmented SAINT sample 

representation. This should be able to strengthen the SAINT representation against noise. 

In our opinion, this only makes sense if the augmentation is not too strong, because the 

augmented sample should represent the same core content. The authors use an α=0.2 

(strong augmentation) [5], which means that the augmented sample consists of less than 

20% of the original sample. 

The SAINT paper [5] was rejected by the ICLR 2022 Conference [22]. The reviewer 

criticized the selection of datasets, the inter-sample attention efficacy and that the 

classical SOTA is not well tuned [22]. Therefore, it is not clear how good SAINT perform 

on tabular data in comparison to the classical SOTA.   

1.5. Applicable Models for the Healthcare Domain 

If a model needs only a small number of features, it is more likely to be applicable in 

clinical practice. This is especially true in combination with emerging digital biomarkers. 

Applicable models, that only need a small relevant feature set, would be very helpful in 

order to conserve clinical resources. The relevant feature set consists of variables, which 

help to increase the model performance by some significant amount. 

1.6. Objectives 

With this paper, we introduce SAINTENS, which is a combination of SAINT [5] and a 

Multi-Layer Perceptron (MLP) ENSemble Classifier. Our new method adapts SAINT to 

tabular healthcare real world data (RWD). 

We would like to show, that SAINTENS can be a new powerful method for tabular 

healthcare RWD. We examine the following two questions: 

1. Does SAINTENS benefit from weaker augmentations (Mixup α >> 0.2)? 

2. Does SAINTENS outperform SAINT and GBDT? 

2. Methods 

2.1. Dataset 

In this study, we used real world data from a benchmarking and reporting system in 

Austrian acute geriatrics. This data was collected from 26 Austrian acute geriatric care 

facilities using a standardized form 

(http://healthgate.at/export/sites/healthgate/download/Bogen_neu_gesamt.pdf), which 

was filled out for each hospital stay of a patient. Each stay represents one line in the 

dataset. The dataset consists of 72109 stays from 63031 persons. As targets, we defined 

the presence of dysphagia during the patient’s admission, the presence of pressure ulcers 
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(PU) during the patient’s stay, decompensated heart failure (HF) and delirium during the 

patient’s stay. Each target represents a binary classification task. For each target, we used 

a selected feature set. In Table 1 the dataset is described for each target. 

In order to design a model, which allows future predictions, we split the dataset into 

a training, validation and test set according to the date of patient admission. The training 

set contains all entries with an admission year from 2008 until 2016. The validation set 

contains all entries with an admission year from 2016 and 2017 and the test set contains 

all entries with an admission year from 2018 until the beginning of 2021. This dataset 

split should ensure a good estimate how good the model generalize into the future. Some 

patients stayed in acute geriatric care facilities multiple times through the years. 

Therefore, we excluded all entries in the training set, if this person had also entries in 

one of the other sets. We also excluded all entries in the validation set, if this person also 

had entries in the test set.  

 

 

Table 1. Statistical description of the dataset for each target. Each column represents one target. For each target, 

it shows the number of used variables for each variable type, the number of samples in each set, the class 
imbalance and the mean percentage of missing values per row in the labeled training set. The relative size of 

each labeled dataset (training/validation/test) in comparison to the complete labeled dataset 

(training+validation+test) is displayed in brackets. The mean percentage of missing values per row of the 

unlabeled training set is shown in the last row in brackets. 

Statistic Dysphagia PU HF Delirium 
# Continuous Variables 2 10 7 5 
# Categorical Variables 10 25 26 13 

# Samples unlabeled training set 48089 48089 48089 48089 

# Samples labeled training set 42427 (67%) 18559 (81%) 20588 (74%) 21253 (73%) 
# Samples labeled validation set 7773 (12%) 1763 (8%) 2904 (10%) 3054 (10%) 

# Samples labeled test set 12819 (20%) 2462 (11%) 4193 (15%) 4929 (17%) 

% Positive class 8% 4% 4% 2% 

Mean % of NA per row 6% (10%) 16% (34%) 14% (37%) 25% (39%) 

 

 

2.2. Applicable Models 

To get applicable models for the real world application, it is more efficient to only use 

relevant features for the models. We trained a Multi-Layer Stack Ensemble Model [23] 

on the training set without Bagging and without NN, to achieve faster training and 

inference. Then, we computed the feature importance on the validation set. In the next 

step, we selected all variables, which had a positive impact on the performance. The 

feature selection procedure was repeated several times until no irrelevant feature is in the 

set. We selected those feature sets, which performed well on the validation set and 

consisted out of few features. Only the relevant feature sets were used for the targets. 

2.3. SAINTENS 

Our goal is to make SAINT more robust for missing and corrupted values. It should also 

benefit more from the pre-training procedure. This is helpful, if we have less unlabeled 

data. Therefore, we made three modifications:  

1. MLP Ensemble: In the fine-tuning step, SAINT uses a simple MLP on the CLS 

token (it is the classifier token; see [24]) of the SAINT representation to predict the target. 
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We instead use a MLP Ensemble on the whole SAINT representation without the CLS 

token representation. The ensemble can increase the performance [25] and can reduce 

variance [26]. 

2. Only classifier fine-tuning: In the fine-tuning step, we only train the MLP 

Ensemble Classifier and not the whole model like in SAINT. The idea is to avoid 

overfitting to the labeled training data.  

3. High Mixup α: We also use a much higher α for Mixup to increase the 

representational power of SAINT. That means we use a much weaker augmentation in 

the pre-training.  

The modifications are depicted in Figure 1. The implementation of SAINTENS can 

be found soon on GitHub and the source code was modified under the Apache 2.0 license. 

Our implementation is based on the following GitHub repository [27], which is under 

the Apache 2.0 license. We did not use the mask embedding for SAINT and SAINTENS, 

because it was not mentioned in the paper [5] and in our opinion, it is not necessary. 

 

 

 

Figure 1. This figure shows the differences between SAINT and SAINTENS. E is the Embedding Layer and 

S is SAINT. The number of features is displayed as n and the number of samples is displayed as k. 

 

  

2.4. MLP Ensemble 

We used 50 MLPs with one hidden layer and combined them into one ensemble. All 

MLPs were initialized randomly to increase the performance [25]. During the training 

phase, all MLPs were trained independently. They all got the same training data in the 

same order. In the inference, the output of each MLP was summed up to result in the 

final MLP Ensemble output. We used a Softmax function [28] after each MLP output to 

scale it to the range of 0 to 1 for the inference. 

2.5. Experiments 

We aimed to compare the performances of SAINT, SAINTENS and GBDT in our 

experiments. The GBDT models were trained in the Autogluon Framework [23] on the 

labeled training set and the labeled validation set was used for the hyperparameter 

optimization with Random Search (200 rounds). We used the default hyperparameter 

searchspace. We added the number of estimators (from 50 to 10000) to the XgBoost 
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searchspace, the number of boosting rounds (from 1000 to 10000) to the LightGBM 

searchspace and the number of iterations (from 1000 to 10000) to the CatBoost 

searchspace. SAINT was pre-trained with three different α (0.2, 0.8 and 0.9) on the 

unlabeled training set. The SAINT and the SAINTENS models were fine-tuned on the 

labeled training set for each pre-trained model. The labeled validation set was used for 

the hyperparameter optimization and model selection. 

For all SAINT and SAINTENS models we used one SAINT layer, 8 attention heads, 

a learning rate of 0.0001, an embedding size of 32 and a weight decay of 0.01 (same 

hyperparameters like the authors used in the SAINT paper [5]). The denoise loss of the 

continuous features was taken 10 times more into account than the loss of the categorical 

features in the Github implementation [27]. We decided to give both loss terms a 

balanced influence. Additionally the denoise loss was only computed for features, if this 

feature was not a missing value in the original sample. In our opinion, it makes no sense 

to predict missing values.  

We optimized two hyperparameter for SAINT and SAINTENS with grid search. We 

varied the hyperparameter “lam0” and the hidden layer size of the MLP Classifiers. The 

hyperparameter “lam0” is the weighting of the contrastive loss. “lam0” is setting the 

influence of the contrastive loss in comparison to the denoise loss. We chose three 

different “lam0” (0.5, 1 and 2). This hyperparameter is set to 0.5 in the Github 

implementation [27]. The contrastive loss had a small impact with “lam0” of 0.5. 

Therefore, we also used bigger values. SAINT uses a MLP Classifier and also 

SAINTENS uses MLPs in the Ensemble Classifier. These MLPs consist of one hidden 

layer and we varied the size of this hidden layer (1000, 512, 256, 128, 64, 32 and 16). In 

the Github implementation, the size is set to 1000 [27]. We used smaller sizes to reduce 

overfitting for SAINTENS.  

We pre-trained the SAINT models for 100 epochs and the fine-tuning was performed 

for 50 epochs. To reduce training time, we stopped the training if the area under the 

receiver operating characteristic (AUROC) dropped by 0.01 on the validation set.  

The future validation estimation was calculated with all the models on the labeled 

test set. We used bootstrapping with 200 rounds to calculate the mean and the standard 

deviation of the AUROC. 

3. Results 

The best hyperparameters for SAINT and SAINTENS, which are found by grid search, 

are shown in Table 2. SAINT works best with a MLP hidden layer size of 128 or 256. 

For SAINTENS the best MLP hidden layer size is more diverse.  

The results of the experiments are shown in Table 3. In mean SAINTENS (Max. 

SAINTENS) outperforms SAINT (Max. SAINT) and GBDT (Max. GBDT). SAINTENS 

with a Mixup α of 0.9 outperforms in three out of four targets all other methods and also 

SAINTENS with a Mixup α of 0.2. SAINT with a Mixup α of 0.9 is only in the mean 

better than SAINT with a Mixup α of 0.2, but it outperforms SAINT with a Mixup α of 

0.2 only in two out of four targets. Overall SAINT and GBDT are on the same 

performance level, but SAINT outperforms the GBDT in three out of four datasets. 

However, the standard deviations are too high for indicating a statistical significant 

difference of the AUROCs. 
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Table 2. The best hyperparameters according to the labeled validation set for the SAINT and SAINTENS 

models. SE stands for SAINTENS. The first value in each cell is the “lam0” and the second value is the size 

of the MLP hidden layer. 

Target SAINT 
α=0.2 

SAINT 
α=0.8 

SAINT 
α=0.9 

SE  
α=0.2 

SE  
α=0.8 

SE  
α=0.9 

Dysphagia 1/64 1/128 2/256 0.5/512 2/16 2/512 

PU 2/256 1/256 0.5/256 1/64 0.5/512 1/128 

HF 0.5/16 1/128 0.5/128 1/512 0.5/16 1/32 
Delirium 2/128 1/256 0.5/128 2/64 1/256 1/512 

 
 
Table 3. Aggregated results of the experiments. The values represent the mean AUROC. The standard 
deviation of the AUROC can be found in brackets. Max. GBDT means the maximum AUROC of all GBDT. 

Max. SAINT means the maximum AUROC of all SAINT models. SAINTENS α=0.9 is the SAINTENS model 
which is based on a pre-trained SAINT with a Mixup α=0.9. SAINTENS α=0.9 is based on pre-trained model 

with weak augmentation and SAINTENS α=0.2 is based on a pre-trained model with strong augmentation. 

Method Dysphagia PU HF Delirium Mean 
Max. GBDT 0.9150 

(0.0046) 

0.8936 

(0.0249) 

0.9031 

(0.0189) 

0.8061 

(0.0281) 

0.8794 

Max. SAINT 0.9160 

(0.0049) 

0.8695 

(0.0274) 

0.9126 

(0.0166) 

0.8151 

(0.0276) 

0.8783 

Max. SAINTENS 0.9164 
(0.0049) 

0.8854 
(0.0229) 

0.9130 
(0.0180) 

0.8177 
(0.0278) 

0.8831 

SAINTENS α=0.9 0.9164 

(0.0049) 

0.8683 

(0.0285) 

0.9130 

(0.0180) 

0.8177 

(0.0278) 

0.8789 

SAINTENS α=0.2 0.9152 

(0.0050) 

0.8854 

(0.0229) 

0.8849 

(0.0218) 

0.8074 

(0.0289) 

0.8732 

SAINT α=0.9 0.9157 
(0.0049) 

0.8695 
(0.0274) 

0.8948 
(0.0205) 

0.8150 
(0.0274) 

0.8738 

SAINT α=0.2 0.9147 

(0.0050) 

0.8283 

(0.0366) 

0.9126 

(0.0166) 

0.8151 

(0.0276) 

0.8677 

 

 

4. Discussion 

4.1. Interpretation of Results 

Overall, SAINTENS outperforms SAINT and the GBDT on our geriatric dataset. The 

experiments showed that SAINTENS and SAINT are at least on the same performance 

level as GBDT. The performance boost by using SAINTENS or SAINT has no clinical 

relevance right now, but in combination with multimodal learning they may have a 

clinical relevance in the future. SAINTENS or SAINT can be combined with image and 

text processing NN to build one large NN. This NN can increase the performance [6] and 

applicability in the discovery and development of digital biomarkers. 

The difference in the mean AUROC between SAINTENS α=0.9 and SAINTENS 

α=0.2 of 0.0057 (Table 3) can be interpreted as an increase in the representational power 

of the SAINT representation with a decrease in augmentation strength. In three out of 

four targets SAINTENS benefits from the weaker augmentation (α=0.9). The 

classification performance of SAINT is only affected in the mean performance of all 

models by the augmentation strength. Without the model for pressure ulcers, SAINT 
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does not benefit from the weaker augmentation. A possible explanation is that the pre-

training effect can be reduced by the fine-tuning procedure, because the whole SAINT 

model is trained in the fine-tuning step. Therefore, SAINTENS may benefit more from 

the pre-training. These interpretations are based on the limitations described below. 

Therefore, more future research is needed to examine these hypotheses on other 

healthcare RWD. 

4.2. Limitations 

In this study, we used a feature pre-selection and a small number of features. Future 

research has to investigate, how SAINT and SAINTENS perform without feature pre-

selection and with a higher number of features. An important question is how SAINT 

and SAINTENS deal with unimportant features.  

We only used one tabular healthcare real world dataset. SAINTENS needs to be 

validated on additional real world datasets in future research. Our results are tested only 

in binary classification tasks.  

Our targets have a high class imbalance (Table 1), which is typical with respect to 

e.g. diagnoses. The class imbalance leads to more unstable results, because of the less 

amount of positive labels. Less training data is available for these labels and this can lead 

to a overfitting.  

It is not clear at which percentage of unlabeled data the pretraining is useful. This 

research question was not investigated in this work. 

4.3. Conclusion 

SAINTENS and SAINT can be powerful on tabular healthcare RWD with mixed feature 

types, missing values and less labeled data. In combination with multimodal learning 

they may be used on RWD comprising tabular, text and image data, for discovery and 

development of new digital biomarkers. 
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