
Integration of Python Modules in a
MATLAB-Based Predictive Analytics

Toolset for Healthcare

Lukas HAIDERa,b,1, Martin BAUMGARTNERa,b, Dieter HAYNa,c and

Guenter SCHREIERa,b
a AIT Austrian Institute of Technology, Graz, Austria

b Institute of Neural Engineering, Graz University of Technology, Graz, Austria
c Ludwig Boltzmann Institute for Digital Health and Prevention, Salzburg, Austria

Abstract. Background: Python and MATLAB both are common tools used for
predictive modelling applications, not only in healthcare. In our predictive

modelling group, both tools are widely used. None of the two tools is optimal for all

tasks along the value chain of predictive modelling in healthcare. Objectives: The
aim of this study was to explore different ways to extend our MATLAB-based

toolset with Python functions. Methods: Pre-existing interfaces between MATLAB

and Python have been evaluated and more comprehensive interfaces have been
designed to exchange even complex data formats such as MATLAB tables. Results:

The interfaces have successfully been implemented and they were validated in a

Natural Language Processing scenario based on free-text notes from a telehealth
services for heart failure patients. Conclusion: Integration of Python modules in

our MATLAB toolset is possible. Further improvements especially in terms of

performance, are required if large datasets need to be exchanged. A big advantage
of our concept is that tabular data can be exchanged between MATLAB and Python

without loss and the Python functions are called dynamically via the interface.

Keywords. MATLAB, Python, Predictive Analytics, Machine learning, Data

exchange, Interfacing

1. Introduction

1.1. Background

With increasing digitalization and the use of telehealth systems and wearables in

medicine, ever larger amounts of data are being generated. The processing and

interpretation of these large amounts of data is difficult for humans. Therefore, predictive

modelling and other artificial intelligence (AI) technologies are becoming more and

more popular in healthcare [1] [2].

To create accurate predictive models, specialists from different disciplines and with

different background are needed to contribute their knowledge during the model

development. Furthermore, the presentation of the models must be understandable and

comprehensible for humans. This requires interactive graphical tools that combine

1 Corresponding Author: Lukas Haier, Institute of Neural Engineering, Graz University of Technology,

AIT Austrian Institute of Technology, Reininghausstr. 13/1, 8020 Graz, Austria, E-Mail: L_haider@gmx.at

dHealth 2022
G. Schreier et al. (Eds.)
© 2022 The authors, AIT Austrian Institute of Technology and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220369

197

human intelligence with the computing power of computers to produce optimal results.

[3] [4] [5]

1.2. Predictive Analytics Toolset for Healthcare (PATH)

In the past years, a ‘Predictive Analytics Toolset for Healthcare’ (PATH) has been

developed at the AIT Austrian Institute of Technology [6]. This tool is based on

MATLAB (MathWorks, Natick, US). PATH consists of various modules supporting the

whole process from objective definition, data de-identification and model development

to deployment. The relation of these modules to one another can be specified via a graph-

based GUI in MATLAB. For data transfer between the modules, MATLAB tables and

structures are used: Mainly, data are passed using MATLAB tables, while structures are

used to exchange settings and metadata.

Additionally, several modules have been developed at AIT especially for deep

leaning applications, which are based on Python (The Python Software Foundation,

www.python.org). So far, researchers had to decide whether MATLAB or Python should

be used for a specific research question, since no interface between the respective

modules existed. One example of such a pre-existing Python module is a natural

language processing (NLP) module for classifying telehealth notes into one or more

categories [7].

1.3. State of the art

In the literature, six different ways to link MATLAB and Python are described. Already

in 2009, a first MATLAB to Python compiler was published by Jurica and von Leeuwen

[8]. In 2015, MATLAB introduced its own product called MATLAB Compiler SDK [9].

Both products have the capability to compile MATLAB code into Python code. This

interface is suitable if MATLAB code should be integrated in Python. However, it wasn’t

useful for our interface because we needed the other direction, i.e., to integrate Python

code into MATLAB.

Another published way is to use a built-in interface like the Python environment

(“pyenv”) in MATLAB or MATLAB Engine in Python [9] [10] [11]. Both interfaces are

provided by MALTAB and have the capability to call Python functions in MATLAB or

MATLAB functions in Python. This is a very interesting way of interfacing for our use

case. However, the exchange of MATLAB tables is not supported.

Another published option is exchanging data via files. Different file types can be

used, depending on the specific requirements of the interface. For example, Keshavarz

and Mojra in [12] use Python-files and txt-files to exchange data. MathWorks published

a solution based on parquet–files for data exchange, with column orientated data like

tables [9]. Furthermore, it is also possible to use MAT-files for this task, since there are

Python modules like SciPy [13] and hdf5storage [14] supporting this original MATLAB

file format. However, metadata saved in the MATLAB table properties are not supported

by these approaches.

MATLAB also supports the use of the Open Neural Network Exchange (ONNX)

format to use Python based frameworks in MATLAB [9]. However, this approach does

not support data processing in MATLAB and Python together.

Another published way is to use a module called mlabwrap [15]. This module has

the capability to use MATLAB in Python. It was published by Bednar in 2009 [16] and

uses a similar way like the MATLAB Engine in Python [9]. Since mlabwrap isn’t

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset198

http://www.python.org/

updated since 2011, it did not support some of the newly developed MATLAB data

formats and, therefore, it was not applicable for our interface.

Summing up all the approaches described above, two types of data transfer were

identified:

1. Using “direct” interfacing with built-in functions

2. Using files (e.g., MAT-files) stored on the disc for data exchange

However, each of these options comes with certain drawbacks:

1. using “direct” interfacing: converting non-supported data types into supported

data types, computing time, only a few Python versions are supported by

MATLAB

2. using “mat-files”: disk-space, time for saving and loading, different “mat-file”

formats like (‘-v6’,’-v7’ or ‘v7.3’) etc.

No matter which of the two approaches is used, the transferred data types must be

supported. Our literature research revealed:

� Supported data types: scalar structures, doubles, 1-dimentional cell array, 1-

dimentional char array

� Unsupported data types: Struct arrays, tables, time stamps, string arrays [9]

In Python, pandas is a common module in data science. This module includes a class

called DataFrame which is similar to MALTAB tables [17]. Therefore, this class seemed

promising for our interface.

1.4. Objectives

The aim of this work was to explore ways to integrate Python modules into PATH. For

this purpose, different concepts should be developed to call Python functions from

MATLAB and to exchange data including MATLAB tables and structures between

MALTAB and Python. Beyond feasibility, the concept should also be efficient in terms

of the computation time needed to exchange data, compared to the computing time of

the function. The concepts should be validated by integrating a pre-existing, Python-

based natural language processing (NLP) module [7] into PATH, based on a telehealth

dataset for heart failure patients [18].

2. Methods

2.1. Interface implementation

For the implementation of the interface, both alternatives described in chapter 1.3. were

used, i.e., 1. ‘direct’ interfacing with built-in functions and 2. „mat-files“ for data

exchange. In the first concept, a data stream was passed while in the second concept files

were used to exchange data between MATLAB and Python.

On the MATLAB side, data types not supported for exchange between MATLAB

and Python were converted to supported data types. Tables and timetables were

transferred to structs prior exchange with Python. Therefore, MATLAB provides two

built-in functions called table2struc and struct2table. While these functions supported

the exchange of table content, metadata stored in table properties were lost. Therefore,

such metadata were transformed to a structure tableMetadata, which was stored in a

nested structure called dataExchangeStruct together with the actual data. For translation

of this structure into a table including table properties, another algorithm was developed.

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset 199

Figure 1. Design of the three-level structure to exchange table between MATLAB and Python

In Fig. 1, the general design of the data is shown. The green part represents the actual

data, while the blue part contains the metadata of the table properties. In the end, a three-

layer nested structure was the most-suited application for data exchange.

On the Python side, a specific class was developed which contained all algorithms

to prepare the data and store them as pandas DataFrame. Metadata were stored as

dictionary. This class contained a method for importing files or variables provided by

MATLAB as described above. Also, a function was developed which coded Python data

in the same format to send back data from Python to MATLAB.

The exact workflow of calling the Python function is shown in the sequence

diagram plotted in Fig. 2.

Figure 2. Sequence diagram of the interface. Orange: MATLAB code; Blue: Python code

The interface is started by calling the newly developed function

“pythonMatlabInterface”. First, the interface checked if the Python environment is

already running. If not, it was started using the MATLAB command pyenv. Next, the

data stored in tables were converted to the nested structure dataExchangeStruct shown

in Fig 1. Then, the Python function was called using the command py.NLP and the data

were passed to the Python function. There, the structure dataExchangeStruct was divided

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset200

into the table data, stored in the pandas DataFrame, and the metadata, stored as

dictionary. Next the data were passed to the NLP function and where the actual data

processing took place in Python. The results were stored into a new DataFrame using

the developed “PythonMatlabTableInterface”. Then, the data stream created within this

class was sent back to MATLAB, where all Python data types were mapped into

MALTAB datatypes and the dataExchangeStruct was converted to a MATLAB table.

There is also the option to use “mat-files“ for data exchange instead of the Python

environment. Therefore, the same functions as shown in Fig 2were used. Instead of

calling the Python function in MATLAB, the data were saved to a ‘MAT-file’. Thereafter,

the “mat-files“ were loaded in Python using the developed class. For returning data from

Python to MATLAB, “mat-files“ were saved in Python and loaded in MATLAB. The

default version of the “mat-file” was the so-called version ‘-v6’. If necessary, data could

be saved and loaded also in all other versions.

2.2. Performance test

We have tested the performance of all approaches to find out, how much time is needed

to transfer the computation between MATLAB and Python, depending on the amount of

data. Therefore, four different performance tests were conducted:

1. We compared the time for saving tables with the build-in MATLAB functions

‘save’ and ‘load’ with the time for saving and loading tables with the developed interface

in MATLAB. A table of size 1,000 MB, containing 113,000 rows and 1,000 columns,

was used. Eight columns were of type datetime, four columns were cells of characters,

the other columns were of type double. Different versions for saving files in MATLAB,

i.e., ‘-v6’ ‘-v7’ and ‘-v7.3’, were tested.

2. We analysed the time to convert a table into the developed structure and to

convert this structure back into a table in MATLAB. The columns corresponded to those

in test 1, while different numbers of rows were tested.

3. The time for loading and saving “mat-files“ in Python was examined. “mat-

files“ of format ‘-v6’, ‘-v7’ and ‘-v7.3’ as generated in test 1 were used (1,000 MB table,

113,000 rows, 1,000 columns).

4. The processing time of the data-stream from MATLAB to Python and back was

analysed. The data stream was generated from a table, which was converted form the

“mat-file” in test 1.

Each test was repeated 50 times and mean and standard deviation were calculated.

2.3. Pilot application in a real-world scenario with telehealth free-text annotations

While the tests described in 2.2 focussed on technical interoperability, pragmatic

interoperability was tested by applying the interface on pre-existing Python and

MATLAB tools in a pilot application. Therefore, the feasibility of the developed

interface was evaluated in a pilot application with real world telehealth data. Therefore,

a dataset with free text notes from “HerzMobil Tirol” [18] was used. “HerzMobil Tirol”

is a telehealth program where patients record their vital parameters (e.g., blood pressure,

heart rate, ...) each day and submit those data to a backend service. Additionally, patients

and healthcare professionals can enter free text notes, e.g., concerning subjective

wellbeing, therapy, diagnosis, education and training, technical problems, etc.

Classification of these notes via natural language processing (NLP) was already explored

by Wiesmüller et al. in a previous work [7]. The NLP module developed by Wiesmüller

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset 201

was implemented as a Python script. This script performed all operations by loading the

data and saving the classes per free-text note to a result file.

This pre-existing script was included in a PATH process. The results obtained by

calling the script from MATLAB and transferring all data from MATLAB to Python and

transferring the results back from Python to MATLAB were compared to the results

obtained by the original Python script.

3. Results

3.1. Performance test

We evaluated the two options of the interface as described above and compared the

results of MATLAB / Python only on a PC with following hardware specifications:16GB

RAM and a processor Intel® Core™ i7-4610M CPU @ 3.00GHz. The software

specifications are: Windows 10 Enterprise, MATLAB R2021b, Python 3.8, Python IDE:

PyCharm Community Edition 2021.1.3

Tab. 1 shows the storage and loading time of tables and the standard derivation σ

with the built-in MATLAB function and the developed algorithm. '-v6', '-v7' and '-v7.3'

here stands for the “mat-files” saving versions defined by MATLAB. There you can see,

that the developed algorithm had similar saving and loading times.

Table 1: Performance of the developed functions compared to the built-in MATLAB functions for saving

and loading different “mat-file” versions (mean ± standard deviation [s])

MAT – file version ‘-v6’ ‘-v7’ ‘-v7.3’
MATLAB: save 6.222 ± 1.245 25.622 ± 1.861 65.409 ± 4.887

saveTableForPython 5.408 ± 0.392 27.309 ±1.862 67.442 ±5.420

MATLAB load 4.248 ±0.192 8.445 ± 0.183 32.712 ± 3.234
loadTableFromPython 4.786 ± 0.201 11.285 ± 0.301 25.417 ±2.151

Tab. 2 shows the time needed to convert data of different sizes between tables and the

newly developed data structure. It could be shown that the developed algorithm is verry

fast and the converting time is short compared to the saving time shown in Table 1

Table 2: Time to convert data of different size between a MATLAB table and a struct (mean ± standard

deviation [s])

Size 500 MB 1,000 MB 1,500 MB 2,000 MB
convertTableToStruct 0.153 ± 0.040 0.393 ± 0.083 0.747 ± 0.056 1.028 ± 0.103

convertStructToTable 0.136 ± 0.021 0.369 ± 0.079 0.714 ± 0.057 1.005 ± 0.098

Tab. 3 shows the time that it takes to load or save the “mat-files” stored in version '-v6'

and 'v7' in Python. Saving the data takes four times longer than loading the data from a

“mat-file”. This algorithm is not as fast as the MATLAB functions shown in Table 1.

Tab. 4 shows the time required to process the data flow in Python. This algorithm is

clearly slower than the MATLAB algorithm.

Table 3: Time to load and save different “mat-file” versions of files with the size of 1,000 MB in Python

using the developed Python class (mean ± standard deviation [s])

MAT – file version ‘-v6’ ‘-v7’ ‘-v7.3’
Load MATLAB table 25.606 ± 0.737 28.451 ± 0.457 -

Save MATLAB table 100.952 ± 0.782 101.205 ± 0.412 -

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset202

Table 4 Process data from and to data stream in Python (size: 1000 MB)
 Mean ± standard deviation [s]
Store data from MATLAB data stream into Python class 45.266 ± 1.440

Create data stream from MATALB 51.224 ± 4.664

3.2. Pilot application in a real-world scenario with telehealth free-text annotations

We applied the developed interface to a predictive modelling scenario which combined

pre-existing modules coded in MATLAB and Python, respectively. Since only functions

(not scripts) can be called by PATH, the pre-existing NLP script was wrapped into a

Python function. For the whole workflow, the file containing all free text notes was

loaded as a table in MATLAB and transferred to the Python function via the newly

developed interface. The Python module classified all free text notes to one or more

classes and generated a Python dictionary. This dictionary was then transferred back to

MATLAB via the interface. The whole process for calling the NLP function in Python

was successfully tested within PATH. The Python call did not significantly increase the

overall processing time and further processing of the results sent back to MATLB was

possible without any restrictions.

4. Discussion

We have successfully developed an interface between MATLAB and Python which

supports the exchange of all required data formats, including tables. As can be observed

in Tab 1, the developed algorithm is similarly fast as the built-in MATLAB functions.

Therefore, this way is well suited to store tables in a form that can be read in Python.

The time for storing and loading data depends significantly on the “mat-file” version.

Version '-v6' and '-v7' are binary files developed by MathWorks. Different time between

version '-v6' and '-v7' are due to compression in ‘-v7’. Files of version '-v7.3' are based

on the HDF5 standard. Conversion to HDF5 and compression leads to the significantly

increased time losses for this format. However, variables larger than 2GB can only be

stored in ‘-v7.3’ in MATLAB.

Comparing the loading and saving time of MATLAB to the times in Python (Tab. 1

and Tab. 3) shows that Python has a loading time that is up to 5 times longer and a saving

time that is up to 20 times slower. This is due to the fact, that the exact structure of the

MAT file is not known. Therefore, the SciPy algorithm was developed by trial and error,

which exact structure is included in a “mat-files”. Also, only the '-v6' and '-v7' versions

are listed in Table 3. This is due to the fact, that the module for storing and loading files

of version ‘-v7.3’ has a very bad performance and the times for 1,000 MB were not

measurable. Therefore, it is currently not possible to use files stored in version '-v7.3' in

our interface.

When comparing Tab. 2 and 4, it can be seen, that the conversion of a table into the

newly developed structure in MATLAB is very fast. The time depends on the size and

the content of the table. The more columns with datetimes and cells of characters are

contained, the longer the conversion takes. Converting this structure to a pandas

DataFrame in Python takes much longer than the conversion in MATLAB.

Future updates of the algorithm will focus on the improvement of performance for

converting the structure to a pandas DataFrame in Python. Additionally, ways to

exchange data with more than 2 GB need to be explored (e.g., by splitting up such large

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset 203

variables into multiple smaller files). Similarly, the developed interface currently always

loads the whole amount of data, which may lead to limitations of the memory available.

The developed interface extends the development of new modules in PATH. Thus,

new modules, e.g. for the evaluation of “HerzMobil Tirol”, can now be developed in

Python. This will in the future support the inclusion of new (Python) developers in our

PATH developer team. Additionally, it will help us to evaluate state-of-the art

approaches, no matter whether they were developed in Python or in MATLAB

environments.

Finally, the presented concept of combining MATLAB and Python is useful to

tackle similar challenges related to exchanging data stored in tables without losses and

help to improve the interoperability between MATLAB and Python based data

processing and AI approaches in general.

Acknowledgement

This work was performed in the context of the d4HealthTirol project, which is funded

by the Land Tirol.

References

[1] D. V. Dimitrov, Medical Internet of Things and Big Data in Healthcare, Healthc Inform Res. 22(3)

(2016), 156–163.

[2] Dash, S., Shakyawar, S.K., Sharma, M. et al., Big data in healthcare: management, analysis and future
prospects, J Big Data 6 (54) (2019)

[3] D. Keim et al., Mastering The Information Age – Solving Problems with Visual Analytics., (2010).

[4] D. Keim et al. , Visual Analytics: Definition, Process, and Challenges, in Information Visualization.
Springer-Verlag, Berlin Heidelberg, 2008, pp. 154-175.

[5] S. Liu et al, Towards better analysis of machine learning models: A visual analytics perspective, Visual
Informatics, (2017), 1(1) 48-56.

[6] D. Hayn et al., Predictive analytics for data driven decision support in health and care, it - Information
Technology, 60(4) (2018)183-194.

[7] F. Wiesmüller et al., Natural Language Processing for Free-Text Classification in Telehealth Services:
Differences Between Diabetes and Heart Failure Applications, Studies in health technology and
informatics 279 (2021). 157- 164.

[8] P. Jurica and C. van Leeuwen, OMPC: an open-source MATLAB-to-Python compiler, Frontiers in
NEUROINFORMATICS. 3(5) (2009), 1-9.

[9] MathWorks, MathWorks, https://de.mathworks.com/products/matlab/matlab-and-python.html. last

access: 02 Februar 2022.
[10] I. Pill et al., SIMULATE: A Toolset for Fault Injection and Mutation Testing of Sumulink Models, in

IEEE Ninth International Conference on Software Testing, Verification and Validation Workshops,

Chicago, IL, USA, 2016 pp. 168-173.
[11] Y. Koush et al., OpenNFT: An open-source Python/Matlab framework for real-time fMRI

neurofeedback training based on activity, connectivity and multivariate pattern analysis, NeuroImage,
156 (2017), 489-503.

[12] M. Keshavarz and A. Mojra, “Geometrical features assessment of liver's tumor with application of

artificial neural network evolved by imperialist competitive algorithm,” International Journal for
Numerical Methods in Biomedical Engineering, 31(5) (2015), 1-19

[13] The SciPy community, SciPy, https://docs.scipy.org/doc/scipy/tutorial/io.html., last access: 3.2.2022.

[14] F. Nordsiek, hdf5storage, https://pythonhosted.org/hdf5storage/information.html#matlab-mat-v7-3-file-

support. last access: 3.2.2022.
[15] A. Schmolck and V. Rathod, mlabwrap v1.1, http://mlabwrap.sourceforge.net/. last accessed 3.2.2022.

[16] J. A. Bednar, Topographica: building and analyzing map-level simulations for Python, C/C++,

MATLAB, NEST, or NEURON components, Frontiers in Neuriinformatics, 3 (2009), 1-9.
[17] The pandas development team, pandas, https://pandas.pydata.org/docs/index.html. last access 3.2.2022.

[18] A. Von der Heidt et al., HerzMobil Tirol network: rationale for and design of a collaborative heart

failure disease management program in Austria, Wiener klinische Wochenschrift, 126 (2014),734-741.

L. Haider et al. / Integration of Python Modules in a MATLAB-Based Predictive Analytics Toolset204

