
Perspective on Code Submission and Automated Evaluation Platforms for University

Teaching

Florian Auera, Johann Freia, Dominik Müllera, Frank Kramera

aIT-Infrastructure for Translational Medical Research, University of Augsburg, Augsburg, Germany

Abstract

We present a perspective on platforms for code submission and

automated evaluation in the context of university teaching. Due

to the COVID-19 pandemic, such platforms have become an

essential asset for remote courses and a reasonable standard

for structured code submission concerning increasing numbers

of students in computer sciences. Utilizing automated code

evaluation techniques exhibits notable positive impacts for

both students and teachers in terms of quality and scalability.

We identified relevant technical and non-technical require-

ments for such platforms in terms of practical applicability and

secure code submission environments. Furthermore, a survey

among students was conducted to obtain empirical data on

general perception. We conclude that submission and automat-

ed evaluation involves continuous maintenance yet lowers the

required workload for teachers and provides better evaluation

transparency for students.

Keywords:

Teaching, automated code evaluation, education, student as-

signment management

Introduction

Acquiring programming proficiency still remains a matter of

continuous practice, and professional guidance remains a key

aspect for success. In-person sessions allow teachers to react

to the individual issues of students and thus enable better pro-

gressions. Therefore, guided practical courses on basic and

advanced topics play a major role in teaching at universities

[1,2].

A crucial bottleneck in practical courses is the submission and

evaluation of programming code of the course participants.

Submissions of solutions for tasks and sub-tasks are usually the

basis for deriving grades, and therefore need to be documented.

An often-seen method is either sending the code by email or

copying files to a USB flash drive, followed by a manual re-

view by a tutor or teacher. For obvious reasons, this method is

not only time-consuming and error-prone but also tedious, and

can easily be undertaken by a platform with included automat-

ed evaluation [3,4].

Because of the current COVID-19 pandemic, the face of teach-

ing changed rapidly from in-person meetings to virtual sessions

[5]. Online tools now have to fill the gap left behind by not

being able to give direct feedback on problems and errors a

student might encounter while solving programming tasks.

Providing the utmost verbose feedback is crucial for supporting

the students in their progression [6].

In this work, we describe a perspective on how a submis-

sion and automated evaluation platform can help to facili-

tate university teaching, especially in practical courses.

Methods

For the submission and automated evaluation (SAE) of pro-

gramming code, we developed our platform MISITcms. It is

based on an existing contest management system called CMS

[7], which development is discontinued.

On our platform, it is possible to define several tasks for which

the students can upload their solutions (Figure 1). To determine

the correctness of the submissions, certain checks can be im-

plemented, ranging from a simple comparison of the output of

the run scripts to more comprehensive tests performed on the

in- and output data.

A simple case would be to run the submitted scripts with

different parameters and compare the output with a pre-

defined text file. While this is already sufficient for most

cases, it has its limitations if the result of the program is

dependent on changing input data or includes a random-

ized component. In those cases, it is necessary to specify

a more sophisticated evaluation of the results.

In both cases, it is possible to report to the student under which

circumstances the submission fails and which errors occur

while running their code. This feature not only is valuable to

the students but also reduces the time and effort teachers have

to invest in testing.

Running external code on a local machine always includes se-

curity issues. To reduce and even avoid potential risks, the

submitted source code is evaluated in a secure environment. On

our platform, this is realized using Isolate containers [8,9]. Alt-

hough we taught Python [10] in our programming courses, the

secure environment is not limited to this programming lan-

guage. Multiple languages are supported due to dynamic pro-

gramming language interfaces.

MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation
P. Otero et al. (Eds.)

© 2022 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220212

912

Executing code in a sandbox comes with some downsides: Re-

quired input data must be mounted within the containers to be

accessible for the scripts. Furthermore, the results, i. e. the out-

put of run scripts and occurring errors have to be stored not

only for documentation purposes but also to provide the previ-

ously mentioned feedback for the students. To accomplish this,

it is possible to define specific directories to be mounted within

the sandbox on a task-specific level.

For security reasons, the isolation of the sandbox also includes

that internet access is locked from within the containers. How-

ever, in some cases, access to online resources is required. For

example, if some assignments include the usage of certain APIs

to retrieve online data. For those cases, it possible to grant net-

working permissions on a task-specific level to allow internet

connectivity inside the Isolate container.

Third-party modules, libraries, or frameworks are often re-

quired for solving complex tasks. Thus, our platform supports

specifying predefined lists of libraries and modules for certain

tasks. Those are automatically loaded and integrated into the

container environment when the tasks are evaluated.

Providing a platform for code evaluation is also limited by the

available server-side resources. Each submission has to be

evaluated, and with an increasing number of students also the

demands on computational capabilities are growing. Basic ap-

proaches for executing submissions in parallel tend to fail due

to the logical dependencies between subsequent program tasks

and lead to more sophisticated queuing strategies. To surpass

those limitations, it is possible to define several workers, that

are responsible for evaluating one task (Figure 2). Submissions

are queued and distributed over those workers to balance the

load of the system. In the admin panel, the teachers have an

overview of running and scheduled tasks and even can activate

and disable available workers.

Proper practical courses usually take place over several weeks

or months, with a significant amount of lecture slides, exercis-

es, example code and code fragments, and different kinds of

data provided. Unfortunately, it is not unusual that those are

scattered across several platforms. Our platform, therefore, acts

as a hub to consolidate the different documents for the stu-

dents. To not overwhelm the students with the huge number of

files at once, it is also possible to unlock those files needed for

the current and previous days.

The setup of such kind of a platform tends to be not quite sim-

ple in terms of software dependencies need to be installed and

databases have to be prepared and structured. To simplify this

process for others, we provided a dockerized [11] version of

MISITcms, that reduces the effort almost to a one-click solu-

tion. The different components are organized with docker-

compose into different containers, including the underlying

database to be initialized on startup.

The source code for the MISITcms is published with the open-

source license GPLv3 and can be found on Github at

https://github.com/frankkramer-lab/MISITcms-app.

Figure 1 – Interface for students showing the different exercises, upload form for solutions and results for previously evaluated sub-

missions.

F. Auer et al. / Perspective on Code Submission and Automated Evaluation Platforms for University Teaching 913

Results

We employed our platform in three practical courses over sev-

eral semesters and thereby gradually improved MISITcms. The

course was aimed at teaching basic and advanced Python pro-

gramming skills and was focused on implementing biomedical

applications.

Experience from a Teacher Perspective

The application of automated evaluation of student submis-

sions turned out to be a great improvement in contrast to previ-

ous courses, which depended on the manual evaluation. Since

the exercise had not to be checked by a teacher for each student

individually, the course could be held with less staff and the

obtained time could be spent on providing better individual

support for the students.

After a short initial period, in which the students required sup-

port in interpreting eventually occurring error messages, the

feedback provided by our platform was sufficient to enable

them to work largely independently.

Each course day had a dedicated topic for which the corre-

sponding materials were provided on our platform. New topics

were activated on the day firstly needed, which then facilitated

the start into the new topic and lead them directly to address

the exercises.

Additionally, the reduced workload affected a reduced stress

level of the tutors during the course, which was generally ap-

preciated. However, this was paid for by a one-time work

overhead during the preparation phase, since the exercises not

only needed to be prepared but also integrated into the plat-

form. Choosing a suitable specificity of the test cases was par-

ticularly one of the persistent problems. A simple comparison

of the results of the user submissions to a predefined solution

turned out to be sufficient in many cases, but often it was nec-

essary to create custom tests and even refine those over the

courses. In other cases, ambiguous solutions or rounding errors

had to be taken into account, which also leads to more sophisti-

cated checking.

Especially in the first attempts of the course, we experienced

technical problems with the SAE server, which initially lead to

our advancements. A stable IT infrastructure is crucial for a

smooth flow of the course, but still, at the beginning on some

occasions, this couldn't be provided. Therefore, it is particular-

ly important that our improvements guaranty more stability and

advanced error handling.

Figure 2 – Containerized architecture of MISITcms illustrating the interplay of the different components.

F. Auer et al. / Perspective on Code Submission and Automated Evaluation Platforms for University Teaching914

Students’ Experience

Besides our own experiences, we were eager for feedback from

the participants of the practical courses. Therefore, we de-

signed a retrospective survey to capture their point of view on

the features of our platform in terms of functionality, usability,

transparency and feedback, the code submission process com-

pared to other practical courses, and the retention of the SAE

platform for this course. The survey was conducted anony-

mously and out of the 25 students, who completed the course, 9

(36%) participated in the survey. The results of the survey are

illustrated in Figure 3.

While the basic functionality of our platform was perceived as

commonly satisfying, the usability shows a clear trend towards

being more positively accepted. The transparency of the evalu-

ation of the tasks was experienced general impartial, with a

slight tendency to the positive side, whereas the automated

feedback on the results and error messages seems to drift to-

wards the contrary.

The question of how the students assess the procedure of sub-

mitting the programming code, and its evaluation process,

compared to other programming courses cannot be answered

clearly. Although the majority is quite neutral or even positive

towards an SAE process, the opinions spread from great ap-

proval to a preference of traditional methods.

Nevertheless, the majority of the participants recommended the

further usage of our platform for this practical course or at least

supported the recommendation. Only one student expressed

refusal towards the usage of an SAE platform within this

course.

However, the low response rate to the survey, in addition to the

readily comprehensible number of participants of the course

lowers the expressiveness to some extent.

Future improvements

Our own experience, as well as the feedback of the students,

shows that a further enhancement of the test case specificity

and more verbose feedback messages to the students are re-

quired. This will help to tackle the shortcomings reported for

transparency and automated feedback.

Additional improvements in functionality and usability MISIT-

cms could be extended towards a platform for code execution

and interactive computation, including Jupiter Notebook style

features. Since our platform already acts as a repository of the

course materials, even further extension towards a massive

open online course (MOOC) [12] is imaginable.

An important topic not addressed yet within MISITcms, and

SAE platforms, in general, is checking for plagiarism. There-

fore, an automated validation could be included, which com-

pares the submitted code against the submission of other stu-

dents to determine shared fragments or whole blocks of code.

This can be extended even further to a check against common

online resources like Stack Overflow or GitHub to avoid blind-

ly copy-and-pasting third-party solutions.

Conclusions

In this work, we introduced an implementation of a code sub-

mission and automated evaluation server for student program-

ming assignments and discussed positive and negative aspects

of these systems for university teaching. Our implementation

MISITcms integrated key features like a student-friendly web

interface and learning environment, scalable and secure code

execution environments, dynamic integration of teacher-

defined tasks, support for multiple programming languages,

and automated feedback for students.

Figure 3 – Evaluation results of the retrospective student survey

on their perspective on SAE from a programming course in uni-

versity.

F. Auer et al. / Perspective on Code Submission and Automated Evaluation Platforms for University Teaching 915

Through utilizing MISITcms for university teaching as well as

conducting a retrospective student survey over the last two

years, we were able to identify multiple positive and negative

aspects. The core benefits were the robust, transparent as well

as automated code evaluation reducing the workload of teacher

grading, the scalability, and the utilization of a structured as

well as powerful platform for coding courses. MISITcms can

act as a hub for course materials and also provides capabilities

for archiving code submissions. However, we encountered

challenges like an additional work overhead for creating auto-

mation-suitable assignments, handling or accepting various

solution strategies and possible coding errors as well as the

requirement of a stable IT infrastructure.

In summary, we concluded that an automated submission and

evaluation platform for programming assignments requires

continuous development and adjustment, but allows highly

robust, structured as well as scalable student code evaluation

which reduces the workload of teachers and which resulting

transparency is appreciated by students.

Acknowledgments

This work is a part of the DIFUTURE project funded by the

German Ministry of Education and Research (Bundesministe-

rium für Bildung und Forschung, BMBF) grant

FKZ01ZZ1804E.

References

[1] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, A

Study of the Difficulties of Novice Programmers, (n.d.)

5.

[2] M. Piteira, and C. Costa, Learning computer program-

ming: study of difficulties in learning programming, in:

Proceedings of the 2013 International Conference on In-

formation Systems and Design of Communication - IS-

DOC ’13, ACM Press, Lisboa, Portugal, 2013: p. 75.

doi:10.1145/2503859.2503871.

[3] M. Gaudencio, A. Dantas, and D.D.S. Guerrero, Can

computers compare student code solutions as well as

teachers?, in: Proceedings of the 45th ACM Technical

Symposium on Computer Science Education, Associa-

tion for Computing Machinery, New York, NY, USA,

2014: pp. 21–26. doi:10.1145/2538862.2538973.

[4] B. Skupas, and V. Dagiene, Is automatic evaluation

useful for the maturity programming exam?, in: Pro-

ceedings of the 8th International Conference on Compu-

ting Education Research, Association for Computing

Machinery, New York, NY, USA, 2008: pp. 117–118.

doi:10.1145/1595356.1595382.

[5] L. Mishra, T. Gupta, and A. Shree, Online teaching-

learning in higher education during lockdown period of

COVID-19 pandemic, International Journal of Educa-

tional Research Open. 1 (2020) 100012.

doi:10.1016/j.ijedro.2020.100012.

[6] B.A. Becker, P. Denny, R. Pettit, D. Bouchard, D.J.

Bouvier, B. Harrington, A. Kamil, A. Karkare, C.

McDonald, P.-M. Osera, J.L. Pearce, and J. Prather,

Compiler Error Messages Considered Unhelpful: The

Landscape of Text-Based Programming Error Message

Research, in: Proceedings of the Working Group Re-

ports on Innovation and Technology in Computer Sci-

ence Education, Association for Computing Machinery,

New York, NY, USA, 2019: pp. 177–210.

doi:10.1145/3344429.3372508.

[7] S. Maggiolo, G. Mascellani, and L. Wehrstedt, CMS -

Contest Management System, (2021). https://cms-

dev.github.io/.

[8] M. Mareš, and B. Blackham, A New Contest Sandbox,

in: 2012. http://ioi.te.lv/oi/pdf/INFOL094.pdf.

[9] M. Mareš, and B. Blackham, isolate, International

Olympiad in Informatics, 2021.

https://github.com/ioi/isolate.

[10] G. van Rossum, Python Tutorial, Centrum voor

Wiskunde en Informatica (CWI), Amsterdam, 1995.

[11] D. Merkel, Docker: Lightweight Linux Containers for

Consistent Development and Deployment, (n.d.) 5.

[12] J. Kennedy, Characteristics of Massive Open Online

Courses (MOOCs): A Research Review, 2009-2012,

Journal of Interactive Online Learning. 13 (2014) 1–16.

Address for correspondence

dominik.mueller@informatik.uni-augsburg.de

F. Auer et al. / Perspective on Code Submission and Automated Evaluation Platforms for University Teaching916

