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Abstract 

Gliomas are the most common neuroepithelial brain tumors, 
different by various biological tissue types and prognosis. They 
could be graded with four levels according to the 2007 WHO 
classification. The emergence of non-invasive histological and 
molecular diagnostics for nervous system neoplasms can revo-
lutionize the efficacy and safety of medical care and radically 
reduce healthcare costs. Our pilot study aimed to evaluate the 
diagnostic accuracy of deep learning (DL) in subtyping gliomas 
by WHO grades (I-IV) based on preoperative magnetic reso-
nance imaging (MRI) from Burdenko Neurosurgery Center’s 
database. A total of 707 MRI studies was included. A “3D clas-
sification" approach predicting tumor type for the entire pa-
tient's MRI data showed the best result (accuracy = 83%, ROC 
AUC = 0.95), consistent with that of other authors who used 
different methodologies. Our preliminary results proved the 
separability of MR T1 axial images with contrast enhancement 
by WHO grade using DL. 
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Introduction 

Gliomas are the most common neuroepithelial brain tumors, 

different by various biological tissue types and prognosis. A 

widely used classification of central nervous system tumors 

shaped by the World Health Organization (WHO) in 2007 was 

based on histogenesis and microscopic similarities of neo-

plasms [4]. According to the 2007 WHO classification, gliomas 

are graded with four levels [4]. WHO grades I-II are typically 

referred by experts to low-grade gliomas (LGG), WHO grades 

III-IV – to high-grade (HGG). This classification was revisited 

in 2016: the new system appeared more complex and relied on 

molecular subtypes associated with treatment outcomes [5]. 

Despite the rationale behind the new classification, its applica-

tion is costly, requiring expensive analyzes. That is the reason 

the old WHO grade classification is still in use, especially in 

countries with limited resources. 

The emergence of non-invasive histological and molecular di-

agnostics for nervous system neoplasms can revolutionize the 

efficacy and safety of medical care and radically reduce 

healthcare costs. The current state of artificial intelligence ap-

plications in neuroimaging research opens up a promising per-
spective in that direction [3]. The scientific results in radiomics-

based brain malignancy typing are also inspirative [6]. The in-

troduction of this quantitative neuroimaging analysis derived 

new diagnostic, prognostic and predictive tools and advocated 

for using them to enhance a personalized tumor diagnosis and 

management plan design in neurooncology [2]. Thus, radi-

omics, involving MRI as the most common imaging for brain 

tumors, is in the focus of researchers. However, most data-

driven studies in neurooncology are limited with the amount of 

data available, which prevents the confident application of “big 

data” and deep learning approaches.  

N.N. Burdenko Neurosurgery Center (Moscow, Russia) – is a 

leading neurosurgical facility in Russia and one of the biggest 

in the world. Over 20-year exploiting electronic health records 

and PACS, Neurosurgery Center has accumulated a large ar-

chive of nervous system images, which are usable in radiomics 

research. Our pilot study aimed to evaluate the diagnostic accu-

racy of deep learning (DL) in subtyping gliomas by WHO 

grades (I-IV) based on preoperative magnetic resonance imag-

ing (MRI) from Burdenko Neurosurgery Center’s database. 

Methods 

The primary dataset for pilot machine learning experiments was 

obtained from Burdenko Neurosurgery Center's PACS for 

1,280 patients with glial tumors and WHO grade verified by 

morphological descriptions who underwent preoperative MRI 

scanning in a period between 2009 and 2018. The data were 

MR (DICOM) images in series of brain sections identified for 

each patient, collected on several devices in different modes. 

Exploratory data analysis revealed inconsistency in the number 

of slices between patients, even in one modality (ranged 18 to 

30 images). A greater difference in slice number appeared for 

different modes. The sets of MRI modalities also differed be-

tween patients. We decided to use only T1 axial images with 

contrast enhancement, since they were found in most subjects 

(n = 707) and were collected primarily on the same device. 

However, the remaining difference in scanning devices influ-

enced the selected data to differ in a certain number of sections 

and image resolution. 

We attempted to solve the technical task of classifying the pa-

tient's neuroimaging data (a series of MR images from a single 

study) by four classes (WHO grades):  I, II, III, and IV. To ac-

complish this goal, two basic approaches were proposed. The 
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first one - a "3D classification" – predicted tumor type for the 

entire patient's MRI data as a single object. This approach ex-

ploited 707 volumetric images (each collected from the series 

of patient preoperative slices). We advocated for the first ap-

proach as no manual slice labeling was done before the experi-

ments. The second - a "2D classification" – was a separate pre-

diction of tumor type for each specific slice in 17,730 images 

(an average of approximately 25 slices for each of 707 patients). 

The dataset appeared to be almost balanced across the glioma 

WHO grades I, II, III, IV (189, 133, 127, and 258 cases, respec-

tively). 

Data preprocessing 

In the 3D classification approach, we applied the following data 

processing methods to normalize and unifу each series in quan-

tity. The selected DICOM images were read and formatted as 

numeric arrays. These numbers reflected the pixel values of the 

source images. The resulting values were normalized by sub-

tracting the average of the array elements and dividing by the 

standard deviation: 

 

The resolution of each MR slice was scaled to 512 x 512. For 

all patients, the number of slices was adjusted to 32 using the 

Area interpolation algorithm. Thus, patients with fewer slices 

received additional images, while for patients with extra slices, 

some adjacent sections were averaged.  

In the case of 2D classification, image preprocessing was dif-

ferent due to further use. The MR image from one slice was also 

read into a numeric array. The original single-channel image 

was transformed to three-channel, with the initial values dupli-

cated into each channel. That approach did not violate the im-

age structure but was required for feeding into the learning 

pipeline. Transformations were applied to adjust images to a 

single size 512 × 512, and normalize them with mean = (0.485, 

0.456, 0.406), and standard deviation = (0.229, 0.224, 0.225). 

These values were derived from the ImageNet dataset to apply 

for pre-trained models. We used several augmentation tech-

niques with a probability of 0.2: rotation by an angle <= 10 de-

grees, scaling transformation 0.9-1.1 of the original image, and 

image mirroring to increase the train size artificially. 

Training and testing split 

In the 3D and 2D cases, the data were divided into training, val-

idation, and testing samples using the split function with a class 

balance maintained. The training dataset was kept as 80% of the 

original. Both the validation and texting samples were 10% of 

the total sampled data. 

Model training 

The main deep learning model in the case of 3D was the Dense-

Net architecture adapted to process 3D images. In the 2D case, 

the Resnest200e architecture was used. Adam optimizer with a 

learning rate of 1e-4 was applied for all the models. Cross-en-

tropy was chosen as the loss function, which implemented the 

following formula, where P was the distribution of true re-

sponse, Q was the probability distribution of model predictions, 

x was the patient's image: 

 

The training was carried out both for the classification of glial 

tumors into all 4 types of malignancy, and for the binary case, 

when only low (I and II) and high (III and IV) grades were sep-

arated. 

The deep learning was performed on 8 NVIDIA A100-SXM4-

40GB GPU in both 3D and 2D cases. The calculations were 

parallelized. The pipelines were scripted with Python program-

ming language (version 3.8) using PyTorch library (version 

1.7). 

Results 

The results of binary classification into LGG and HGG with 3D 

and 2D approaches are shown in Table 1. 

Table 1 – The binary classification quality metrics for 3D and 
2D approaches 

Metric 3D (DenseNet) 2D (Resnest200e) 
Accuracy 67% 61% 

ROC AUC 76% 73% 

Sensitivity 58% 44% 

Specificity 78% 81% 

 

Four-level classification resulted in higher indicators for the 3D 

approach demonstrated in Table 2. The overall accuracy was 

calculated as the ratio of correct predictions to the number of 

objects classified (MRI studies in 3D design and slices in 2D 

case). ROC AUC was the average of the ROC AUCs for all 

pairwise classifications "one against all." The ROC AUC was 

first calculated for the binary task: (I vs. II, III, IV), then (II vs. 

I, III, IV), etc. The resulting ROC AUCs were averaged. 

 

Table 2 – The multinomial classification quality metrics for 
3D and 2D approaches 

Metric 3D (DenseNet) 2D (Resnest200e) 
Accuracy 83% 50% 

ROC AUC 95% 72% 

 

The by-class classification metrics for 3D and 2D paradigms 

are summarized in Tables 3 and 4, respectively. 

Table 3 – multinomial classification quality metrics for 3D ap-
proach 

WHO grade Precision Recall F1-Score 
I 0.79 1.00 0.88 

II 0.97 0.63 0.76 

III 0.50 1.00 0.67 

IV 0.95 0.85 0.90 
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Table 4 – multinomial classification quality metrics for 
2D approach 

WHO grade Precision Recall F1-Score 
I 0.60 0.56 0.58 

II 0.11 0.45 0.17 

III 0.02 0.32 0.04 

IV 0.85 0.47 0.61 

 

Discussion 

Defining the type of glioma is important for an early treatment 

plan design and prognosis assessment. However, the exact di-

agnosis determining the treatment modality comes from an in-

vasive biopsy which is unsafe to a certain extent. The substitu-

tion of surgical procedures with non-invasive diagnostic meth-

ods should significantly improve patient safety and reduce time 

to deliver the most effective care, which is also crucial. 

N.N. Burdenko Neurosurgery Center has a large collection of 

glioma surgery cases documented in medical information sys-

tems.  More than a thousand operations on glial tumors are per-

formed annually. That is why the expertise in glioma surgery is 

rich at our Center, and the data we accumulated for two decades 

may be secondarily used for deep learning experiments. In this 

study, we present our initial experience in automatic differenti-

ating of WHO grades for glial tumors – the task intuitively per-

formed by clinicians as a preliminary judgment. 

The efficiency of machine learning in subtyping gliomas re-

ported in the literature does not contradict our preliminary re-

sults. H. Cho et al. (2018) have shown the potential of three 

models (logistic regression, support vector machine and ran-

dom forest)  to distinguish LGGs from HGGs with an average 

area under the curve (AUC) of 0.9030 for the test cohort and an 

average of 88% accuracy, 95% sensitivity and 70% specificity 

[1,2]. The authors analysed MRI data from 285 patients with 

brain tumors using T1-weighted, T1-contrast enhanced, T2-

weighted and FLAIR MRI. Feature extraction was done with 

minimal redundancy maximum relevance algorithm. 

C. Su et al. (2019) explored the feasibility and diagnostic per-

formance of radiomics based on anatomical, diffusion and per-

fusion MRI in differentiating glioma subtypes and predicting 

tumour proliferation [7]. The best AUC reached 0.896 for 

grades II-III, 0.997 for grades II-IV, and 0.881 for grades III-

IV. 

The above-mentioned studies were primarily focused on feature 

engineering. Z. Ning et al. (2021) attempted to combine local 

MRI features with deep feature extraction using a convolutional 

neural network (CNN) to develop a noninvasive glioma grading 

model [6]. The authors report the AUC, sensitivity, and speci-

ficity of the model based on a combination of radiomics and 

deep features were 0.88 (95% CI: 0.84, 0.91), 88% (95% CI: 

80%, 93%), and 81% (95% CI: 76%, 86%), respectively, for the 

testing cohort. They stated that the developed model outper-

formed the models based only on either radiomics or deep fea-

tures (p<0.001), and was also comparable to the clinical radiol-

ogists. 

In our studies, a sole deep learning approach with well-proven 

models for image classification was utilized. 

According to the literature and our initial experience, the sepa-

ration of LGG from HGG should be more solvable than differ-

entiation WHO grades inside LGG or HGG. That is reasonable 

since аn experienced physician usually sees the differences be-

tween benign and malignant neoplasms of the brain on MRI 

data in typical cases. Table I demonstrates the confidence of the 

model in the diagnosis of WHO grade I and IV, and less accu-

racy in WHO grade II-III subtyping. That is consistent with the 

clinician’s experience in assessing the types of gliomas "by 

eye."   

Nowadays, we gain evidence that the application of machine 

learning to preoperative MRI demonstrates promising results 

for predicting IDH mutation, MGMT methylation, and 1p/19q 

codeletion in glioma [3]. We hope that our pilot study serves as 

a basis to contribute to research in computer-aided glioma di-

agnosis.   

Nevertheless, we believe data scientists and neuroscientists do 

not have enough arguments to expect a non-invasive “biopsy” 

coming from only one neuroimaging modality. It is much more 

likely that the highest quality of non-invasive diagnostics with 

deep learning can be obtained with simultaneous usage of vari-

ous neuroimaging modalities: different MRI modes, including 

spectroscopy, CT, including perfusion, and PET. Collecting 

such a complex dataset presents significant challenges. How-

ever, the development of non-invasive tumor subtyping tech-

nologies within individual modalities will create the basis for 

future complex solutions and enable a better understanding of 

which methods appear promising, which tumor signatures are 

divided better. At least, that information may be supportive in 

clinical decision-making. This is how the authors of this article 

see the prospects for deep learning development in neuroimag-

ing diagnostics. 

The limitation of our study was still a sample size, data incon-

sistency in terms of format and quantity. However, the experi-

mental settings were close to what practitioners are faced with 

in real-world routine. In a 2D approach, no manual by-slice la-

beling was applied, so the slices with no tumor on them were 

inevitably and erroneously labeled with the WHO grade a pa-

tient has. That could certainly influence the quality of classifi-

cation. However, we accept this limitation in the pilot study 

since the manual labeling requires much more effort and may 

be shifted to the next stage. It was principally important for us 

to verify our neuroimaging data's separability by WHO grade 

and relate it with the results of other researchers, especially 

when obtained with a different methodology. Tumor delinea-

tion may also be considered as an additional preprocessing step. 

Conclusions 

Our preliminary results prove the principal separability of MR 

T1 axial images with contrast enhancement by WHO grade us-

ing DL models. The diagnostic accuracy of DL in glioma sub-

typing is expected to improve through adding modalities, test-

ing new methodologies and image pre- and post-processing 

methods. 
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