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Abstract 

Objective: We aimed to develop a data-driven machine 
learning model for predicting critical deterioration events from 
routinely collected EHR data in hospitalized children. 

Materials: This retrospective cohort study included all 
pediatric inpatients hospitalized on a medical or surgical ward 
between 2014-2018 at a quaternary children’s hospital. 

Methods: We developed a large data-driven approach and 
evaluated three machine learning models to predict pediatric 
critical deterioration events. We evaluated the models using a 
nested, stratified 10-fold cross-validation. The evaluation 
metrics included C-statistic, sensitivity, and positive predictive 
value. We also compared the machine learning models with 
patients identified as high-risk Watchers by bedside clinicians. 

Results: The study included 57,233 inpatient admissions from 
34,976 unique patients. 3,943 variables were identified from 
the EHR data. The XGBoost model performed best (C-
statistic=0.951, CI: 0.946 ~ 0.956). 

Conclusions: Our data-driven machine learning models 
accurately predicted patient deterioration. Future 
sociotechnical analysis will inform deployment within the 
clinical setting. 
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Introduction 

Background 

Critical deterioration events (CDEs) are clinical declines in pe-

diatric inpatients defined by a transfer to an intensive care unit 

(ICU) with initiation of vasopressors or positive pressure ven-

tilation within 12 hours of transfer, a measure associated with 

increased morbidity and mortality[1]. CDEs are associated with 

higher medical costs and higher rates of morbidity and mortal-

ity. Each event adds nearly $100,000 to the cost of hospitaliza-

tion. A review of events at pediatric institutions suggests that 

more than 40% of events may be preventable by providing ad-

vance warning of deterioration to clinical and nursing staff[2–

4]. 

In the past two decades,  several pediatric early warning sys-

tems (PEWSs) have been developed and integrated into the in-

patient clinical processes to predict clinical deterioration using 

vital signs and other clinical data[5–8]. The Children’s Hospital 

of Philadelphia (CHOP) has made a substantial investment in 

improving the recognition and response to clinical deterioration 

by implementing an inpatient Watcher program [9]. The 

Watcher program allows clinicians to proactively identify and 

document high-risk patients who may get sicker based on clin-

ical findings and judgment. Watcher designations are binary 

judgments by the clinical team. 

PEWS aim to improve human processes such as Watcher pro-

grams. Traditionally, they are typically based on a small num-

ber of clinical variables, commonly including vital signs, ag-

gregated into a single risk score by some expert-defined 

method. While such systems show promise, the sole cluster-

randomized trial studying the use of a pediatric early warning 

scoring system demonstrated a reduction in deterioration events 

without a reduction in mortality [5]. There is, therefore, sub-

stantial room for improvement of pediatric early warning sys-

tems. 

Recent studies have explored the use of machine learning for 

improvement of pediatric early warning systems in adults and 

children [10,11] at clinical sites in the US and abroad [12,13], 

with state of the art machine-learning systems consistently out-

performing traditional EWS systems, including the Modified 

Early Warning System [14], Parshuram’s Bedside PEWS[15] 

and Monaghan’s PEWS [12], and the National Early Warning 

System[10]. The current best ML-based systems for pediatric 

patients reach C-statistics from 0.79 to 0.91 with prediction ho-

rizons from 6 to 12 hours, while traditional PEWS only achieve 

C-statistics around 0.7-0.8 [12,13,16–20]. Previous work has 

been limited in the machine learning approach due to inade-

quate feature engineering, short prediction horizon in predict-

ing CDEs, and/or no comparison with human judgments. For 

example, many studies use only static measures of clinical var-

iables, rather than some measure of a trend in recent values 

(e.g., [17]). It is possible that two patients with the same clinical 

state ought to have different risk scores if one has recently been 

improving and the other deteriorating. Many ML-based PEWS 

use vital signs exclusively, ignoring other data including labor-

atory-test results or nurse assessments, leaving out possibly pre-

dictive information (e.g., [21]). Others (e.g.,[12]) use purely 

linear machine learning models, which miss potential important 

non-linear interactions between clinical variables (e.g., a ‘shock 

index’ computed as heart rate divided by systolic blood pres-

sure), while some do not predict deterioration more than an 

hour out, which is of limited clinical utility as it does not give 

clinicians much time to intervene (e.g.,[17]). Some studies 

don’t compare ML-based PEWS to some standard of care – 

whether clinician predictions or a conventional PEWS – leav-

ing doubt as to whether machine learning actually entails some 

improvement over standard of care (e.g.,[22]). 
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Objective 

To our knowledge, there is no single study of machine learning-

based PEWS that avoids all of the above pitfalls. Therefore, our 

objective was to develop and evaluate data-driven machine 

learning models for predicting pediatric deterioration events in 

hospitalized children. We used routinely collected EHR data for 

prediction with the goal of providing more accurate recognition 

of pediatric deterioration than existing models. We used static 

and dynamic variables derived from clinical measures, includ-

ing patient demographics, vital signs, laboratory test results, 

and nurse assessments to predict deterioration 24 hours before 

the ICU admission. We developed both linear and non-linear 

models and compared these ML models’ performance to clini-

cal team judgment (patients identified by the team during care 

as high-risk Watchers). 

Methods 

The Institutional Review Board at Children’s Hospital of Phil-

adelphia (CHOP) approved this study as exempt research (IRB 

20-017837). This study follows the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Di-

agnosis (TRIPOD) guidelines [23]. 

Study Population 

In this hospital-wide retrospective cohort study, we collected 

five years of EHR data at the Children’s Hospital of Philadel-

phia, a quaternary children’s hospital. The institution has 559 

inpatient beds with over 29,000 annual admissions to the hos-

pital. This includes 87 beds in the pediatric and cardiac ICUs, 

which see over 400 admissions annually. We included all inpa-

tient admissions between January 2014 and December 2018 to 

medical or surgical wards, excluding ICUs. Admissions with 

less than a 48-hour length of stay (LOS) were excluded from 

the study. We applied the LOS criterion to ensure enough data 

for machine learning modeling. No additional exclusion criteria 

were applied. We collected 5 EHR data types: registration data 

(admission, discharge, and transfer), patient demographics 

(age, race, sex, insurance), laboratory test results, vital signs, 

and nurse assessments.  

Outcome and prediction window 

The primary outcome was admission to a medical or surgical 

ward with a critical deterioration event (a ward-to-ICU transfer 

with the initiation of vasopressors or positive pressure ventila-

tion within 12 hours of the transfer). All non-case admissions 

were defined as control admissions, including admissions with 

ward-to-ICU transfers that did not qualify as critical deteriora-

tion events. The case prediction time was 24-hours ahead of the 

ICU transfer time. The control prediction times were randomly 

picked from 24 hours after hospital admission to 2 hours ahead 

of disposition/discharge from the ward.  The 24 hours after ad-

mission were reserved as baseline data to ensure the availability 

of required EHR data by machine learning models, and the 2 

hours before disposition/discharge were untouched to prevent 

early leakage of patient disposition signals. Figure 1 describes 

the cohort selection process. 

Table 1 described the cohort patient characteristics from sex, 

race, and insurance. 

Table 1 – Demographic characteristics of cohort admissions 

Variables  Cases 
(n=2,069) 

Controls 
(n=55,164) 

Sex 

  Female (49.3%)  915 (44.2%) 27,288 (49.5%) 

  Male (50.7%)  1,154 (55.8%) 27,874 (50.3%) 

Race 

  White (48.9%)  847 (40.9%) 27,164 (49.2%)  

  African American (30.6%) 656 (31.7%) 16,868 (30.6%) 

  Other (15.6%) 452 (21.8%) 8,452 (15.3%) 

  Asian (3.3%) 69 (3.3%) 1,800 (3.3%) 

  Indian (1.2%) 32 (1.5%) 652 (1.2%) 

  Unknown (0.2%) 13 (0.6%) 228 (0.4%) 

Insurance 

 Medicaid (44.1%) 1,041 (50.3%) 24,205 (43.9%) 

 Medicare (0.4%) 11 (0.5%) 231 (0.4%) 

 Commercial (50.3%) 905 (43.7%) 27,891 (50.6%) 

 Self-pay (5.2%)  112 (5.4%)  2,837 (5.1%) 

 

Figure 1 – Cohort selection flow and final case-control size; 
NICU, neonatal intensive care unit; PICU, pediatric intensive 

care unit; CICU, cardiac intensive care unit. 

Feature Engineering 

Model features were built from 72 raw EHR elements, includ-

ing demographic characteristics, laboratory test results, vital 

signs, and nurse assessments that occurred between the hospital 

admission and the prediction time.  

For the laboratory data, we constructed 14 time-series features 

for each numeric lab test. We first conducted preprocessing 

steps, including deleting labs with invalid units, scaling values 

to ensure that all labs with the same name were measured using 

the same unit. For example, we harmonized all potassium val-

ues to mmol/L unit, e.g., all mmol/mL values were divided by 

1000. Then, we aggregated the most granular time-series data 

points into hourly averaged values. Finally, we constructed 14 

time-series features based on the hourly values, including : (1) 

the first value, (2) the last value, (3) the maximum value, (4) 

the minimum value, (5) the difference between the last two val-

ues, (6) the difference between the last two values divided by 

the last value, (7) the difference between the last value and the 

maximum value, (8) the difference between the last value and 

the minimum value, (9) the difference between the last value 

and the maximum value, divided by the maximum value, (10) 

the difference between the last value and the minimum value, 

divided by the minimum value, (11) the difference between the 

first value and the last value, (12) the difference between the 

first value and the last value, divided by the first value, (13) the 

slope of the last two values, and (14) the linear regression slope 

from all values. Other than the time-series features, we also cal-

culated the count and percentage of different result flags (e.g., 

normal, abnormal, high, and low). 
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We constructed the same set of time-series features for vital 

signs such as systolic/diastolic blood pressures and tempera-

ture.  

Nurse assessments were semi-structured data. Figure 2.A 

shows an example of original assessment of cough with two 

characteristics: full and loose. 

 

Figure 2 – Example of processing nurse assessments. 

To process nurse assessments, we lowercased the value, split 

the value by semicolon (;), and stacked the split value. For ex-

ample, the cough assessment in Figure 2.A was processed into 

what is shown in Figure 2.B. Then, we selected the most recent 

value(s) for each assessment and used one-hot encoding to gen-

erate assessment features. 

Finally, we concatenated the demographic, laboratory test, vital 

signs, and nurse assessment features and formed the final da-

taset for machine learning. 

Missing Data and Data Imputation 

We created a “missing” label for missing values of categorical 

variables. For numeric variables, the missing data were imputed 

using the mean value from the training dataset. 

Machine Learning Modeling 

We built and evaluated three types of machine learning models: 

(1) generalized linear model (GLM), (2) gradient boost model 

(XGBoost), and (3) deep neural network (DNN). GLM is a type 

of regression model which works very well with a limited num-

ber of predictors. Once the model is trained, the computation 

for predicting new samples is extremely fast and can be easily 

distributed. It is also a very interpretable model. Thus, GLM 

has been a popular choice in real clinical applications. XGBoost 

is an implementation of gradient boost model optimized on 

computational speed and model performance. It has recently 

been used to obtain the state of the art performance in various 

biomedical prediction tasks using tabular data. DNN is a type 

of highly non-linear model, which has recently dominated the 

applied machine learning tasks for image, video, and free text. 

We also included DNN in this study as it can potentially capture 

the non-linear interactions between clinical variables. 

Model Performance Evaluation 

We performed nested cross-validation (CV) for optimizing hy-

perparameters and evaluating model performance. Nested CV 

is a more rigorous protocol that overcomes the overfitting pit-

fall of non-nested CV [24]. Figure 3 depicts this nested model-

ing strategy. First, the dataset was randomly split into 10 outer 

folds. One fold was reserved within each outer round as a test-

ing dataset, and the remaining 9 folds were combined and used 

as a training dataset. We then performed a grid search on the 

training dataset through inner 5-fold cross-validation to find the 

best hyperparameters. Table 2 lists the hyperparameters of the 

grid search for each model type. For GLM and DNN, we used 

a cartesian grid search strategy to exhaust all combinations of 

the hyperparameters. A random grid search strategy was used 

for XGBoost because there were too many hyperparameter 

combinations to run an exhaustive search. The random grid 

search was stopped after a maximum of 50 models trained or 

after the area under the receiver operating characteristics 

(AUROC) did not increase more than 0.001 for five consecutive 

runs. We trained a model from the training dataset with the ob-

tained best hyperparameters and tested it on the reserved testing 

dataset for this outer fold. Finally, we computed the evaluation 

metrics from the stacked test model predictions from 10 outer 

folds. 

We evaluated the machine learning model performance with 

four metrics: AUROC (C-statistic), sensitivity, specificity, and 

positive predictive value (PPV). To assess the feasibility of im-

plementing our systems in a real clinical setting, we compare 

the number of variables among different models. We also com-

pared the machine learning models with the clinician’s judg-

ment – the Watcher score – by comparing the sensitivity, spec-

ificity, and PPV in the ROC curve and the precision-recall 

curve. 

 
Figure 3 – 10-fold nested cross-validation strategy; The red 

box test dataset was used as validation dataset for 
hyperparameter search for the inner loop CV; The yellow box 
test dataset was hold-out test dataset for the outer loop CV; 

CV, cross-validation. 
 

 Table 2  – Hyperparameters of model grid search  

Model Hyperparameter 
GLM alpha (distribution between -LASSO and l2-

Ridge regression penalties)  

lambda (regularization strength) 

XGBoost learning rate (the weighting of new trees added 

to the model) 

number of trees 

maximum tree depth 

booster function (gbtree, gblinear, dart) 

alpha (distribution between -LASSO and l2-

Ridge regression penalties for regression tree) 

Lambda (regularization strength for regression 

tree) 

DNN number and size of hidden layers 

activation function (Tanh, Rectifier, Maxout) 

dropout ratio 

Results 

Cohort Description 

We identified 57,233 hospital admissions from 35,998 patients, 

among which 3.6% were case admissions and 96.4% were con-

trol admissions. 
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In the raw EHR data, there were 72 variables comprising 26 

laboratory tests, 5 vital signs, and 41 nurse assessments. After 

feature engineering and one-hot encoding, we obtained a total 

of 3,943 features (predictors) for model training. 

Machine Learning and Clinical Team Watcher Performance 

Our data-driven machine learning models achieved excellent 

predictive performance with C-statistics ranging from 0.929 to 

0.951. Figures 4.A and 4.B show ROC and Precision-recall 

curves, respectively, for all three ML models. These were com-

pared to the performance of bedside teams identifying patients 

as high-risk Watchers during clinical care (depicted in red). The 

ROC curves were created from stacked test predictions from 10 

folds, and showed that XGBoost outperformed GLM and DNN 

in predicting CDEs. 

The Watcher program achieved a 0.261 positive predictive 

value (PPV) with 0.197 sensitivity, confirming that most pa-

tients with CDEs were not predicted by the clinical team. 

 

Figure 4 - Prediction performance comparison between the 
machine learning models and the Watcher score. Because 

Watcher score is a binary (0 or 1) flag that clinicians assign 
to hospital admission, we can not plot the ROC or PRC curves 
by moving the prediction threshold. Instead, we calculated its 

sensitivity, specificity, and PPV, and plotted the Watcher 
performance as a red dot in the figure.  

The GLM model contained 190 features; the XGBoost and 

DNN models had 587 and 3,943, respectively. As expected, 

GLM model had the lowest number of features, while DNN had 

the most. Figure 5 is a stacked bar chart further showing the 

distribution of model features in each category of de-

mographics, lab tests, vital signs, and nurse assessments. GLM 

model features were more evenly distributed in all 4 categories, 

while XGBoost used more laboratory tests. There was no fea-

ture selection in DNN; thus DNN used all developed features. 

 

Figure 5 – The distribution of feature numbers of our 3 
machine learning models in the 4 categories: demographics, 
vital signs, laboratory test, and nurse assessments. DNN used 
all 3,943 features, and because we had one-hot encoding for 
every zip code in demographics, the number of demographic 

features in the DNN model was inflated. 

Discussion 

We developed and evaluated three different types of data-

driven machine learning models that can accurately predict 

acute patient deterioration within 12 hours of ICU transfer, rep-

resented by subsequent administration of vasopressors or posi-

tive pressure ventilation. Our XGBoost model attained better 

performance (C-statistic = 0.951) than the state of the art model 

with an earlier prediction horizon (24-hours prior to ICU trans-

fer), which can give clinicians more time to intervene or pre-

pare. The GLM model achieved similar performance (C-statis-

tic = 0.946) with a third as many model features as the XGboost 

model. We may consider implementing the GLM model in clin-

ical care due to its simplicity with minimal drop in prediction 

performance. Compared with the existing Watcher program, 

which captures clinical team concern, our best model achieved 

4.5 times higher sensitivity given the same PPV. 

The strengths of our study include a data-driven approach and 

time-series feature engineering, which expanded 72 raw EHR 

variables into a total of 3,943 features. The best-performing 

model contained 587 features, the majority of which (427) came 

from laboratory tests. 

The main limitation of our study is that the models were devel-

oped and tested within a single hospital. Using data from addi-

tional hospitals may further test the generalizability of our mod-

els. Another limitation is that the study employed a large num-

ber of variables from EHR data that may limit the potential 

adoption from other hospitals, especially for those hospitals not 

using the same EHR system at CHOP, the Epic EHR system. A 

common data model such as OMOP may be needed to serve as 

a research data warehouse for addressing the limitation of dif-

ferent EHR systems such as Cerner and AllScripts used in dif-

ferent hospitals. Finally, our study required at least 48 hours of 

historical EHR data prior to the onset of ICU transfers, which 

may limit the coverage of the patient population with a short 

floor stay. Further exploration using a shorter LOS may be con-

sidered in the future. 

Future Work 

We plan to further test the reliability of models using 2019 and 

2020 data before deploying the model to a real-time decision 

support system. The reliability test can verify if the models 

using the data from 2014 to 2018 can perform similarly. Further 

model training, calibration, and bias testing across different 

demographics and model calibration are also critical before 

deployment. To maximize the benefit for clinical care, we also 

plan to seamlessly integrate the model into the clinician’s 

workflow by embedding the models into the Epic EHR system 
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using a real-time, event-driven system, based on our previous 

experience[25,26]. It would be important to carefully select and 

evaluate the alert thresholds for sending out alerts to reduce 

clinicians’ alert fatigue in practice. 

Conclusions 

In this sizeable single-hospital retrospective inpatient study, we 

developed and evaluated predictive models for CDEs and 

compared the model performance with the bedside care team’s 

Watcher program. Compared with other state of the art models, 

our best model achieved a better C-statistic with an earlier pre-

diction horizon. Since all our models outperformed the current 

Watcher program, we believe our data-driven machine learning 

model could be implemented as part of a real-time decision 

support system to help identify more at-risk patients and thus 

better prepare clinicians and potentially reduce preventable 

mortality and morbidity. We plan to validate our model 

prospectively and/or at other sites. If this performance holds, 

we would achieve – to the best of our knowledge – state-of-the-

art in ML- or expert-based pediatric early warning systems. Our 

ML approach with a large EHR data feature space may be 

valuable to identify patients with rare clinical events like CDEs. 
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