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Abstract 

Data imbalance is a well-known challenge in the development 
of machine learning models. This is particularly relevant when 
the minority class is the class of interest, which is frequently the 
case in models that predict mortality, specific diagnoses or 
other important clinical end-points. Typical methods of dealing 
with this include over- or under-sampling training data, or 
weighting the loss function in order to boost the signal from the 
minority class. Data augmentation is another frequently em-
ployed method — particularly for models that use images as 
input data. For discrete time-series data, however, there is no 
consensus method of data augmentation. We propose a simple 
data augmentation strategy that can be applied to discrete time-
series data from the EMR. This strategy is then demonstrated 
using a publicly available data-set, in order to provide proof of 
concept for the work undertaken in [1], where data is unable to 
be made open. 
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Introduction 

Clinical prediction models frequently target rare endpoints such 

as mortality within a specific time-frame or other adverse 

events. This is a known challenge when developing machine 

learning models [2], as it is easy to over-train to the majority 

set, producing a classifier of high accuracy, but low utility. In 

machine learning by gradient descent, the weights of a model 

are updated based on the overall distance of the model output 

from the target state using the gradients of a predefined differ-

entiable function. If each training data point contributes equally 

to this cost function, in a data set with a large imbalance be-

tween the majority and minority class the calculation quickly 

favors accuracy in the majority and will err on the side of under-

classifying the class of interest. Under extreme levels of imbal-

ance, this is true even in the instance where there is a strong 

signal from the minority class.  

Data augmentation is an alternative to oversampling, where in-

stead of repeating the same samples exactly, synthetic samples 

are created and used to expand the dataset more richly than rep-

etition alone. Data augmentation in this context has two goals. 

If samples belonging to each class are augmented at a rate that 

is inversely proportional to their imbalance, this has an effect 

equivalent to an oversampling strategy as described above. In 

addition to this, it is possible to introduce an element of spatial 

or temporal invariance that improves the ability of the model to 

recognise patterns in unseen samples [3]. In an image classifi-

cation task for instance, one would not want the model to rely 

on the precise orientation or positioning of the input to be able 

to detect the presence of the target class. Thus, by repeating 

each input image with random rotation, scale and skew factors, 

the model becomes robust in the face of input images that were 

captured in different contexts. More recently, data augmenta-

tion strategies using generative adversarial networks (GANs) 

have been applied to data from the electronic medical record 

(EMR) with some success [4], although this brings with it some 

additional challenges due to the complexity of the implementa-

tion and cost of significant additional model training. A GAN 

uses two models with opposing (adversarial) goals to produce 

realistic data samples —a generator network that creates syn-

thetic data and a discriminator network that tries to differentiate 

these synthetic samples from the real data. As the discriminator 

becomes unable to differentiate between real and generated data 

samples, these samples are deemed sufficiently realistic, and 

treated as though they were part of the original dataset. This has 

been applied with success in medical image analysis [5], which 

are atypical images in their uniformity of scale and aspect. It is 

less common in other image domains, likely due to the availa-

bility of other more straightforward methods such as applying 

transformational filters that are not applicable to medical im-

ages (a skewed or scaled chest x-ray, for example, loses infor-

mation that is relevant to the prediction task). It is possible to 

augment continuous time-series data in an analogous way, 

where noise can be added and filters applied in order to generate 

additional training samples that can improve model generalisa-

bility [6]. Discrete data, however, are more challenging to mod-

ify in this manner, as noise and multiplication factors are mean-

ingless. The problem of finding a generalised solution for dis-

crete, ordered tokens (as found in text or EMR data) is a known 

challenge [7]. We propose instead, a domain-specific method 

of augmentation, which makes clinically relevant assumptions 

about the way data is entered into the source system. 

Methods 

The source data for this work is an excerpt of the MIMIC-III 

Clinical Database [8]. This dataset was accessed using the Am-

azon Web Services Athena Cloud Formation scripts provided 

by MIT-LCP [9]. Code that builds on these scripts to produce 

the results in this paper can be found at 

https://github.com/CBDRH/PaTMan. These models were built 

using the TensorFlow library [10], version 2.0. 

Input data 

This dataset contains 61500 ICU admissions across 57773 hos-

pital admissions, belonging to 46646 patients. Hospital admis-

sions without an ‘admit’ record in the transfers table are ex-

cluded, as these represent either newborns, or incomplete rec-

ords. 

As input, we generate predictions only for the first ICU admis-

sion in each hospitalisation. Hospitalisations where the patient 
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was discharged to general wards within 6 hours of their index 

ICU admission and where the patient died within the first 6 

hours of their index ICU admission were excluded, leaving a 

final total of 52770 included index ICU admissions. 

Endpoint targets  

In order to demonstrate this technique, we selected three pre-

diction targets, each having a differing level of endpoint imbal-

ance (Table 1). 

Table 1– Endpoint prevalence 

Endpoint True False Imbalance 
Death in ICU 3346 49424 0.94 

Death in admission 5304 47466 0.90 

ICU duration > 7 days 7915 44855 0.85 

Tokenisation 

Discrete clinical events were gathered for patient de-

mographics, historical admissions, historical diagnoses and his-

torical ICU admissions. Pathology results were converted to 

discrete tokens according to their decile within all input data i.e. 

[test type]-[decile], or by [test type] alone for non-numeric re-

sults. These tokens were concatenated in as a temporally or-

dered list, which described the patient trajectory over time, e.g. 

[Admission, Female, 75, BUN-9, GFR-2, Ultrasound-Kidney, 

..., Discharge, N17.8, ..., Admission, Female, 77, ..., ICUAd-

mission, ...] describes a patient with one prior admission and a 

history of kidney failure. Each trajectory contains the most re-

cent 500 events that occur prior to prediction time. Diagnoses 

from the current admission are not included, as coded diagnos-

tic information is not available in real-time. This description of 

patient trajectories in tokenised form is equivalent to the pre-

processing described in [1]. 

Model architecture 

A simple model architecture was implemented, with a small set 

of hyperparameters tested for each prediction task. Two ver-

sions of the model network were implemented with either 

LSTM or GRU bidirectional recurrent layers of 5, 10 or 15 

nodes, in order to observe the robustness of the technique across 

simple architecture changes. This set of piloted architectures 

was held the same across all prediction tasks, as the purpose of 

this work is to demonstrate the effect of the augmentation strat-

egy, rather than to produce the most precisely accurate classifier 

for each endpoint. 

Augmentation strategies 

We make a number of assumptions about data within the elec-

tronic medical record that allow the creation of augmented sam-

ples that can be used to improve model accuracy.  

Temporal ordering is of course significant when determining 

whether or not the patient trajectory is trending towards recov-

ery or deterioration, however it is unlikely to matter at a reso-

lution shorter than one hour in duration. The data entry work-

flow is not instantaneous, and can be modulated by systems that 

are outside of the scope of the target patient’s condition, e.g. the 

precise time that a pathology result is returned or manual data 

entry is completed may be heavily affected by the overall work-

load of the hospital on a given day. We therefore bucket data 

into time windows and randomly shuffle events in each of these 

buckets before reassembling the trajectory in order to increase 

the number of available samples. 

We also assume that the length of available patient history is 

only somewhat related to patient outcomes. A more complex 

history of interactions with the healthcare system can be ex-

pected to indicate a more severely ill patient, however this da-

taset was not generated within a closed system of care, and 

therefore the lack of available history data does not strictly in-

dicate that it does not exist, as patients may have interacted with 

numerous other providers prior to this admission. Thus, after 

bucketing and shuffling of data, we randomly truncate patient 

trajectories by dropping up to one third of the oldest events in 

each sample. 

Finally, clinical data entry is a noisy process, affected by many 

external forces, and therefore we assume that up to half of each 

patient trajectory could be randomly masked without changing 

the clinical interpretation.  

By combining these strategies multiple times, we generate ad-

ditional samples proportional to the input distributions to train 

each model. 

Time to event weighting:  

The closer a patient is to time of death when a prediction is 

made, the more extreme their deterioration risk. Similarly, the 

longer the eventual ICU admission, the higher impact that early 

intervention may have on their overall trajectory. 

We expect that amplifying the signal for subjects with the 

strongest evidence of deterioration risk will improve the overall 

calibration of our models. 

For death endpoints, time to event was set to the number of 

days until death at prediction time and the weighting was in-

versely proportional to this value (i.e. more repetition of data 

for subjects with lower time to death). For the long ICU admis-

sion endpoint, time to event used was eventual ICU admission 

duration in weeks, and the weighting was directly proportional 

(higher repetition for the longest overall ICU admissions). 

Data balancing 

Five balancing strategies were tested -  

1. None:  Input data was fed to the model according to 

the original distribution. 

2. Oversampling (simple):  Minority class samples were 

randomly repeated at a rate required to approximately 

balance the input data. 

3. Oversampling (time to event):  As per oversampling 

strategy, except the rate of repetition is instead calcu-

lated based on the time to event for the minority class. 

The total repetition rate is equivalent to the rate for 

simple oversampling. 

4. Augmentation (simple):  Minority class samples were 

randomly augmented (first shuffling, then either trun-

cating or masking). For data augmentation, we aug-

ment both majority and minority class samples, hold-

ing the ratio of these rates equivalent to the same rate 

as per simple oversampling. 

5. Augmentation (time to event):  As per augmentation 

strategy, weighted based on the time to event for mi-

nority class. 

Evaluation Framework 

Given the rare targets of these prediction models, we follow our 

previous work in [1] in reporting additional metrics to provide 

the necessary context that can be obscured by reporting the 

AUROC in isolation [11]. Specifically we focus on the effect 

of different training strategies on the workup to detection ratio 
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(WDR) versus sensitivity, as this gives a concrete measure of 

the excess workload on clinicians (i.e. how many patients they 

must assess for each one correctly targeted intervention) as 

compared to the potential benefit to the patient (i.e. what pro-

portion of truly at-risk patients are correctly highlighted by the 

model). 

In order to combat the known issue of poor calibration of deep 

learning models [12], we follow the same calibration process 

demonstrated in [1]. This strategy uses the distribution of pre-

dictions generated for a held-out calibration set to establish ref-

erence cut-off thresholds that reflect the expected distribution 

of the target event. 

These quantiles are set using a stick-breaking process, which 

generates 10 thresholds that are then transformed to produce a 

risk score of between 1 and 10 for each input trajectory. The 

stick breaking process is defined such that approximately the 

same proportion of inputs are classified ‘high risk’ (risk score 

of 5 or more) as the observed proportion in the calibration set. 

In practice for the most rare events this makes the high-risk 

bands very narrow and the low-risk bands quite wide, reflecting 

the expectation that many more patients will be at low risk of 

experiencing these rare target events than will be at high risk. 

Results 

Predictive performance 

Figure 1 summarises performance statistics for each model 

architecture as applied to each of the target endpoints. The 

AUROC metric (row 1) shows that the original data without 

any up-sampling applied rapidly fits to the majority class, 

struggling to capture much of the data signal at all, plateauing 

with an AUROC of close to 0.5 (where 0.5 is the AUROC for 

random classification, seen as a diagonal line). Reviewing the 

precision-recall curve (row 2) in combination with the workup 

to detection ratio (row 3) shows that for such imbalanced 

targets, all of the up-sampling techniques improve the 

performance somewhat, with the augmentation strategies 

generally outperforming the basic oversampling strategies 

across all metrics. The alerts per 100 patients versus sensitivity 

(bottom row) shows that in order to achieve 50% sensitivity, 

models trained using the original data distribution have to 

generate alerts for between 30 and 40% of patients, where the 

augmented data can achieve the same sensitivity while 

generating alerts for 10% of patients or fewer. For the 

prediction of death in ICU, time to event augmentation 

(AUROC=0.83) and basic data augmentation (AUROC=0.82) 

outperform time to event oversampling (AUROC=0.80) and 

basic oversampling (AUROC=0.73). Likewise for prediction of 

in-patient death, time to event and basic augmentation 

(AUROC=0.82, 0.81 respectively) outperform time to event 

and basic oversampling (AUROC=0.79, 0.80 respectively). 

For the less severely imbalanced prediction task of long ICU 

admissions this also holds, with time to event (AUROC=0.80) 

and basic (AUROC=0.81) augmentation showing significant 

improvement over time to event (AUROC=0.74) and basic 

(AUROC=0.77) oversampling. 

Model calibration 

In Figure 2, raw model output from the time-weighted augmen-

tation strategy is compared with predictions that have been cal-

ibrated according to the expected target distribution and a more 

traditional isotonic recalibration technique [13]. In all cases, the 

distribution-based strategy is much closer to the line showing 

correctly calibrated risk, however the very low number of pos-

itive cases in the calibration set limits its utility for predicting 

death in ICU across the whole range of probabilities. It does, 

however, retain its qualities of improved calibration, despite be-

ing unable to reach higher levels of confidence. 

 

 

Figure 1 - Comparing model statistics across endpoints and 
sampling strategies 

 

Figure 2 - Effect of different model calibration strategies 

Figure 3 compares the calibration curves for each of the piloted 

architectures. Ideal calibration is shown as a diagonal line. All 

of the original data distribution training strategies fall signifi-

cantly below this ideal line, as they fit to the majority class and 

predict very few patients to be at high risk. The discrimination 

is poor, as there are a similar number of positive samples within 

those predicted to be at low risk as those predicted at high risk. 

Particularly of note are the almost horizontal portions of the 

graphs below 50% risk for both death in admission and long 

ICU stay. The combination of time to event sampling and the 

data augmentation strategy has the most consistently acceptable 

calibration curves across all endpoints and architectures, mean-

ing that there is less dependence on the model architecture it-

self, and the signal within the data is captured in a robust fash-

ion. 

G. Kennedy et al. / Augmentation of Electronic Medical Record Data for Deep Learning584



The LSTM architecture with width of 10 units had the most sta-

ble calibration across sampling strategies and end-points, so for 

the rest of the results section where architectures are not being 

compared, these are the results reported. 

The relative stability of the calibration of models trained on 

augmented data versus over-sampled data provides evidence 

that the augmentation strategy described in this work does in-

deed achieve the stated goal of introducing temporal invariance 

through the modulation of bucketed event windows. 

Time to event weighting strategies 

When reviewing models produced under time-to-event 

weighting, this appears to have a different effect under the over-

sampled and augmentation strategies. Applied to augmented 

data the improved stability of model calibration is quite clear, 

although the performance across other statistics is similar. This 

suggests that increasing attention to the most high-risk samples 

does indeed improve discrimination of patients at most immi-

nent risk of deterioration from those at moderately elevated 

risk, and is likely to be a better decision with respect to clinical 

outcomes, rather than attending only to improvements in 

AUROC. 

For over-sampled data under time-to-event weighting, although 

there is some improvement in discrimination for the high-risk 

categories, this improvement is less consistent and comes at the 

expense of a jump in the workup to detection ratio due to an 

increase in false-positive predictions. This difference may be 

due to the fact that an augmentation strategy also acts as a sort 

of model ensembling, as all samples are augmented and there-

fore repeated multiple times, including those of the negative 

class. In the test set this means that all samples are repeated the 

same number of times with the prediction averaged, which can 

improve model performance in and of itself [14]. In addition, in 

the training set, those at extreme risk are augmented more fre-

quently than those at elevated risk, but patients with elevated 

risk will still have significantly more samples than members of 

the negative class. If we aim to keep the overall distribution 

steady between oversampling under basic and time-to-event 

weighting in order to avoid overtraining to the minority class, 

an increase in the oversampling rate at the extremities will have 

the effect of decreasing the rate for positive class samples that 

are at less imminent risk, until they are only very slightly more 

prevalent than the negative class, and thus their signal is harder 

to capture.  

Discussion 

In this work, we do not implement a fully tuned architecture 

that is targeted to each specific endpoint of interest, as was 

demonstrated in [1], instead building a very simple, shallow 

network that can make explicit the effect of manipulating the 

data sampling strategy alone. In particular, this technique is 

specific to recurrent data, and thus we do not include the key 

component of the densely connected sub-model that ingests pa-

tient demographic factors. This fact notwithstanding, we still 

manage to produce a model that can predict half of inpatient 

deaths as high risk with a workup to detection ratio of 2.4 (for 

every 5 patients highlighted by the model, on average 2 will in 

fact die before discharge). Importantly, model calibration is 

greatly improved through the application of this sampling strat-

egy, in a manner that is robust across different model architec-

tures. 

Traditional oversampling methods allow one to boost the signal 

of the minority class only, with a straightforward copy of each 

minority class sample. Using an augmentation strategy instead 

allows for more flexibility, where both the minority and major-

ity class data may be strengthened by resampling each individ-

ual patient trajectory in a knowledge-driven fashion in order to 

create a much richer dataset for both classes. This strategy is 

common in imaging and continuous timeseries datasets, but the 

results presented here show that by making certain assumptions 

about the data collection methodology, it is possible to imple-

ment an equivalent strategy in discrete time-series data. This 

strategy has been designed around assumptions that are relevant 

to data entry in the electronic health record and proven against 

Figure 3 - Calibration metrics across endpoints and architectures 
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that data, however there are many equivalent input token-based 

datasets that may benefit from such treatment, for example con-

sumer behaviour on websites that can be used to drive recom-

mender systems. 

Although generative models have been proposed for the pur-

pose of creating augmented datasets for training models based 

in EMR data, they typically focus on generating aggregate data 

[15]. SMOTE is another alternative for adding synthetic data 

samples of the minority class [16], however this takes as its in-

put tabular data, which limits its applicability to time-series 

data. Other methods of generating synthetic EMR data are 

knowledge-based and therefore restricted to specific disease 

domains [17, 18]. This is the only method to the authors’ 

knowledge that is driven by known factors of the data entry par-

adigm as opposed to the data itself, and therefore generalizable 

across all patient classes and robust to unseen combinations of 

patient characteristics. In addition, this method is computation-

ally and logically inexpensive in comparison to other generative 

methods. This factor not only reduces the cost of creating the 

input data (both time and financial), but also increases the ap-

plicability of model introspection techniques such as LIME [19] 

or SHAP [20]. These algorithms for model explainability out-

put the factors of highest importance with respect to a specific 

prediction, which may be obfuscated by the use of truly syn-

thetic data. By weighting model input according to the time-to-

event parameter, we can ensure that risk immanency is captured 

and thereby robustly improve model calibration. 

Conclusions 

The pattern of improvement seen from applying the data aug-

mentation strategy described in this work is conclusive – im-

proving prediction results across the board for three distinct 

end-points, each with a different level of data imbalance. Time 

to event sampling improves model calibration for all endpoints, 

although its effect on other metrics is less consistent. 
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