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Abstract 

Interest in cloud-based cyberinfrastructure among higher-edu-
cation institutions is growing rapidly, driven by needs to realize 
cost savings and access enhanced computing resources. 
Through a nonprofit entity, we have created a platform that 
provides hosting and software support services enabling re-
searchers to responsibly build on cloud technologies. However, 
there are technical, logistic, and administrative challenges if 
this platform is to support all types of research. Software-en-
hanced research is distinctly different from industry applica-
tions, typically characterized by needs for lower reduced avail-
ability, greater flexibility, and fewer resources for upkeep costs. 
We describe a swarm environment specifically designed for re-
search in academic settings and our experience developing an 
operating model for sustainable cyberinfrastructure. We also 
present three case studies illustrating the types of applications 
supported by the cyberinfrastructure and explore techniques 
that address specific application needs. Our findings demon-
strate safer, faster, cheaper cloud services by recognizing the 
intrinsic properties of academic research environments. 
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Introduction 

The cost-savings and resources of cloud computing represent 

an attractive solution to increased productivity among academic 

institutions. However, there are barriers that have slowed adop-

tion, including policy and politics, distrust of for-profit vendors, 

and complexity of use [1]. Nonetheless, cloud-based architec-

tures facilitate new and important research and their virtues far 

outnumber their limitations. As an increasing amount of re-

search is performed on the cloud, a key question becomes how 

to sustain such research over time, when funding lapses, ven-

dors fall out of contract, or personnel turn over.  

Most modern platforms and technologies are created or licensed 

at individual institutions operating as insulated silos. To collab-

orate with other institutions, a researcher must overcome sub-

stantial technical and bureaucratic overhead. Specifically, 

multi-institute research projects must achieve compliance be-

tween multiple organizations, establish appropriate procedures 

with each Institutional Review Board, and negotiate intellectual 

property rights. It can take months or years to establish multi-

institutional agreements that outline the responsibilities and 

ownership of shared data, and collaborating with sensitive data 

elements is practically impossible. At the same time, there is a 

national and international awareness of the need to promote 

cyberinfrastructure for collaboration [2]. In addition, there is a 

need for affordable, sustainable architecture that supports eq-

uity in research that reaches and engages vulnerable and lower 

socioeconomic populations [3].  

While interest in cloud-based cyberinfrastructure is growing, 

there is limited information on the methods and technologies 

being employed at higher education institutes [4]. Our own ex-

perience suggests that creating affordable cyberinfrastructure is 

a heavily administrative undertaking with a wide variety of 

stakeholders with different interests and levels of participation.  

While researchers create software to increase knowledge or ef-

ficacy, departments and institutions are obligated to consider 

the business case for maintaining these tools. After painstaking 

years spent in designing and creating innovative software 

through sponsored research, researchers commonly face project 

termination due to loss of funding, gaps in institutional support, 

and lack necessary skills to maintain operations. 

To establish potential solutions, we conducted case studies to 

determine the specific needs of various domains of research and 

identify support gaps within the process of creating or using 

software in academic research environments. We found con-

sistent patterns of frustration and confusion when it comes to 

developing software components, publishing these tools, and 

maintaining these solutions over time [5]. There are a number 

of products that provide long-term storage for research data, 

such as DataONE.org, Databrary.org, Datadryad.org, Data-

Hub.io, and FAIRSharing.org. Some projects also find a long-

term home on a code repository site, such as GitHub or GitLab. 

However, when it comes to client-server applications, which 

require operation and upkeep, there are few, if any, viable solu-

tions. 

Our approach to sustainable cyberinfrastructure was an inde-

pendent, nonprofit entity, Hekademeia Research Solutions 

(“Hekademeia”), created to serve as an honest broker and tech-

nical services provider for research at academic institutions. 

The sustainable operating model for Hekademeia relies on pro-

ject-based fees for hosting and services, however it is vitally 

important that projects outside of an active funding cycle re-

main online. Therefore, we invest time upfront to ensure that 

projects in our environment have minimal cost and complexity 

for hosting and support. It is also necessary to foster strong re-

lationships to serve as a trusted collaborator and included in ac-

tive award cycles. To survive this early growth period and sup-

port the necessary research and development toward a full-scale 

cyberinfrastructure system, we have established a cooperative 

agreement with the University of Missouri as a proof-of-con-

cept to provide a source of software-based projects and pilot 

funding. This agreement has enabled us to stand-up an initial 
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cyberinfrastructure and formatively evaluate our efforts to build 

an affordable, reliable system.  

One major cost of providing long-term hosting for research-

based software is computational resources, which can be meas-

ured in cycles, memory, and storage. Efficient operation is a 

careful balance between quality and cost. Underspending can 

result in poor performance, instability, weak security, or worse. 

The conventional wisdom in industry software projects is that 

traffic brings revenue, and this correlation covers the cost to 

scale. With the unlimited scalability of the cloud, this model is 

elegantly simple and easy to execute. However, research pro-

jects are rarely amenable to traffic-based revenue creation. By 

definition, a majority of these projects will serve limited or un-

derprivileged audiences where no industry model would be 

considered viable. To feasibly host these projects and provide 

long-term benefits to the research community and the general 

public, it is necessary to reconsider the conventional wisdom 

and engineer truly sustainable cyberinfrastructure for academic 

research. 

Methods 

Architecture 

Hekademeia provides a novel hosting approach designed to 

minimize costs with negligible impact on quality of service. 

The core of this approach is a Docker-based swarm [6], which 

allows us to commission a cluster of servers to share in the re-

sponsibility of hosting individual software services, called con-

tainers. The swarm’s redundancy provides robustness in the 

event of hardware failure and allows us to scale computational 

resources as needed. Moreover, these containers logically act as 

independent servers, making it possible to give each project an 

isolated, secure, and fully-customizable environment, while 

leveraging the substantial cost-savings of shared hosting. With 

well-designed containers, it is possible to fit hundreds, or even 

thousands of projects on a small number of low-grade server 

nodes. By deriving new projects from a family of base container 

images, we are able to share many layers of software libraries 

and configuration, making individual containers safer and eas-

ier to use at a fraction of the size of a dedicated server environ-

ment. Finally, the static nature of containers practically elimi-

nates the need for system maintenance over time. In fact, users 

in the Hekademeia environment have no system-level access to 

deployed containers. Containerized services can be fully de-

signed and tested in a development environment. The combina-

tion of these techniques results in a highly-scalable, sustainable 

architecture at a much lower cost and lower risk than conven-

tional hosting solutions. 

A Docker container is based on a collection of read-only layers, 

which represent the result state of discrete instructions to copy 

files, install software libraries, or execute commands. Contain-

ers can be derived from other containers, such that they share 

any number of these layers. In fact, a Docker node only needs 

to retain a single instance of this layer, so sharing container lay-

ers can result in substantial file storage and bandwidth savings. 

To maximize this feature of containers, we require all contain-

ers within the proposed architecture to be derived from one of 

our base images. We also encourage our users to use scratch or 

alpine base images wherever possible, as these have a signifi-

cantly reduced system footprint. This allows a majority of the 

system libraries and common frameworks to be reduced to a 

single copy on the swarm. In practice, a container for many pro-

jects can be a simple layer of the project files themselves, re-

ducing a gigabyte system to a handful of megabytes. 

Another key aspect of a Docker container is persistence. Since 

the container itself is read-only, operations to modify the file 

system occur within a container instance and, therefore, cease 

to exist when that container is destroyed. While this may seem 

like a limitation, container persistence is a valuable property for 

designing predictable, scalable systems. By limiting persistent 

storage within a container, it is possible to spawn multiple in-

stances for load balancing or parallelization. This model works 

particularly well for applications using an independent database 

system. Docker also provides secrets, which are a secure way 

to inject sensitive data, such as settings, passwords, and encryp-

tion keys into a container. When it is necessary for a container 

to work with truly persistent storage (e.g., file uploads), a host 

directory can be explicitly designated as a mounted volume. For 

a swarm environment, it is helpful to use a Network File System 

for persistent storage that will be available from any node where 

the container might be instantiated. Once an application is 

adapted to a static environment, it can be “pre-baked”, tested, 

and distributed to a container registry prior to deployment. For 

public images, DockerHub is a popular open registry while 

some code repositories, such as GitHub and GitLab, provide 

more private container registry services. Ultimately, limiting 

the dynamic components of the application to explicit volume 

mounts and independent database systems creates simplicity 

and reliability for the architecture. 

Security is another major consideration for a shared environ-

ment, and it is important to be responsive to project needs. Each 

institution has a series of data classification levels, representing 

sensitivity and risk of breech. These classifications inform our 

planning and allocation of resources. For public data, the only 

consideration is preventing corruption or tampering. More sen-

sitive data requires access controls and authorization protocols 

to ensure that only the appropriate users have access. Highly 

confidential information requires hardware and software-based 

encryption, end-to-end encryption, as well as code reviews and 

testing. The most restricted data, such as protected health infor-

mation (PHI), has additional architectural considerations. In our 

case, we require that all access to such data come through a 

managed API with appropriate monitoring and audit controls.  

These security methods are common and effective in most en-

vironments where software is developed by trusted in-house 

personnel with certifications and accountability. Unfortunately, 

in an academic environment, software is created by inexperi-

enced students, third-party vendors, and even those with delib-

erately malicious or clandestine intent. Since it is infeasible to 

review, test, and monitor every piece of software within an ac-

ademic architecture, special attention must be given to mini-

mizing the impact of vulnerable, malicious, or poorly-designed 

code. It is necessary to assume that projects will have all of 

these qualities and plan accordingly. 

We have found that the ubiquity of Docker and the static nature 

of containers make it relatively easy to develop and test con-

tainer in a local environment prior to releasing a new version to 

a production system. Rather than making changes directly to a 

live application, a developer can deploy a container on a local 

machine, where it can communicate with localized editions of 

storage and settings. In fact, there is little reason to work with 

production data within a development environment. We found 

that developing on a set of pre-defined “unit data” leads to more 

consistent development and debugging. It is often possible to 

reproduce and patch a software bug with confidence by creating 

the appropriate data situation in development. For sensitive ap-

plications, this means that developers need never see or access 

to production data. We call this strategy sandboxing, and we 

have developed a number of advanced methods for creating 

sandbox environments with synthetic data sets. 
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Projects are rarely designed for this sandboxed method of de-

velopment or even optimized for container-based hosting. Be-

fore we could test our cloud-based architecture, we had to mi-

grate each project to a compatible format. It is crucial that this 

migration does not affect the function of the code or create un-

due burden on the developer. At the same time, a light touch is 

necessary to keep labor costs down and keep the project main-

tainable by its creators. There are a few basic techniques that 

we have found common for this migration process. The first 

step in the process is building a functioning container from one 

of our base images. This requires a basic understanding of the 

frameworks and languages used in the project to ensure that the 

correct dependencies are available in production. Next, it is 

necessary to leverage environment variables and localize con-

figuration files. In the production environment, these containers 

will be given specific database credentials, file paths, and other 

settings and the application must be designed to handle these 

changes. We also recommend a schema management and mi-

gration tool to facilitate and automate schema changes on the 

production environment. The migration process can be time-

consuming, and it often requires some level of training or dis-

cussion on the architectural approach. However, the migrated 

projects are often substantially smaller, faster, and easier to 

maintain. The revisions add little or no complexity and provide 

long-lasting benefits to most projects.  

We have constructed a Docker swarm on Amazon Web Ser-

vices (AWS) [7] to demonstrate the techniques and host a series 

of pre-existing research applications. Our swarm consists of 

four servers: a master node (t3.small), two worker nodes (t3.mi-

cro), and a dedicated server (t3.micro) for swarm access and 

specialized tasks. We have also incorporated two Amazon Re-

lational Database Systems (RDS) for PostgreSQL (post-

gresql.org) and MySQL (mysql.com) applications. At the time 

of this publication, our swarm is hosting 14 stacks, with a total 

of 31 services. We use Traefik (traefik.io) as a load-balancer 

and proxy service to issue SSL certificates and direct traffic to 

the correct container(s) on the swarm. The hosted applications 

represent many varieties of application, from basic project web-

site and mobile applications to scheduled data scrapers to gen-

eral research tools. 

Results 

Over the past decade, we have hosted many of the same re-

search applications under traditional hosting systems. This al-

lows us to draw some quantitative comparisons for the new 

method. The immediate predecessor to this architecture was 

primarily PHP 7, Apache 2, Ubuntu 18, various 

HTML/JavaScript applications and HAProxy running on t2. 

micro and t2.smalls in a similar configuration. Most containers 

volume-mounted their project files from a network file system 

on the swarm. Previously, we decided to disable active moni-

toring, which brought our CPU usage down by about 4% to an 

average load of roughly 8%. This configuration was still under 

the baseline utilization for an AWS node, so things typically ran 

smoothly with a similar four-server setup. However, we chose 

to reconsider the architecture due to security considerations for 

third-party developers and an unscalable, manual process for 

renewing SSL certificates every 90 days (dockercloud/haproxy 

did not automate this process as expected). Many of the perfor-

mance improvements were consequences of our focus on CPU, 

RAM, and disk usage during revision. 

Most of our containers were migrated to a Nginx and PHP-FPM 

7 stack derived from the dockage/alpine:3.11 Docker image. 

The immediate result of this change was a container size that 

dropped from 800MB+ to 21MB. Since the container layers are 

replicated to each swarm node that hosts the relevant container, 

this reduces bandwidth and file storage per node dramatically 

(although it is important to note that there is only a single copy 

of the base layers for any number of derived containers). 

These containers were also prebuilt with localized production 

settings as environment variables and Docker secrets. This en-

hancement makes it possible to deploy services to the swarm 

without a copy of the code or other resources. This substantially 

simplified the software release process and makes it compatible 

with Continuous Integration (CI) deployment. For compiled ap-

plications, such as Webpack-based front-ends, the prebake pro-

cess allows the CPU-intensive build process to be performed 

and the 500MB+ JavaScript libraries to remain on the develop-

ment machine. After compilation, these containers are often 

2MB in size, plus the resources for the site media. Importantly, 

this approach eliminates the need for developers to have access 

to the production systems or containers, as they have no “mov-

ing parts”. 

Our experience moving from HAProxy to Traefik was a sim-

plified upkeep process, particularly around automated SSL cer-

tificate renewals, but also Traefik’s label-based service orches-

tration. Traefik has more robust configuration options, such as 

the ability to redirect traffic based on regular expression match-

ing. These redirects would otherwise be part of the server layer, 

complicating development sandboxing and production locali-

zation. 

Finally, we have observed major performance and CPU usage 

improvements. As shown in Figure 1, the baseline CPU usage 

for most of our nodes hovers just above 0% (compared to the 

previous 8%). Other than the usage peaks associated with 

scrapes and scheduled processing jobs, we remain well below 

the AWS baseline usage mark of 10 or 20%. This means that 

where we were previously pushing the limit of what we could 

host on our swarm before increasing nodes, we can now support 

hundreds of projects, depending on their resource characteris-

tics. 

 

Figure 1– Representative 3-day report of CPU-usage from three AWS swarm nodes hosting multiple research software stacks.
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Case Studies 

The Hekademeia architecture is designed to support a variety 

of applications, and research software tends to involve eccentric 

combinations of tools and technologies. The following are spe-

cific examples of common application types and techniques 

used during the design phase to accommodate their research re-

quirements. 

One type of project that we have migrated to our swarm envi-

ronment is a Python-based tool (python.org) for scraping Twit-

ter geolocations. After minor adaptations to a containerized en-

vironment, the script itself functioned properly. However, the 

script was designed to run a single location in a wait-loop. Anal-

ysis showed that each instance of the script consumed 80MB of 

RAM, limiting the number of locations that could be scraped 

concurrently. We knew that a single instance of the script scrap-

ing multiple locations would save some overhead. This was a 

case where we had to weigh the labor cost of modifying the 

script against the long-term costs for hosting. Fortunately, we 

were able to use Python’s pseudo-threading mechanism to par-

allelize the command with minimal code modification. The end 

result was a script that consumed 80MB of RAM, but only an 

additional 2MB per location, making it far more scalable in a 

production environment. 

Another common application type we see are mobile applica-

tions. There are countless uses for mobile technology in re-

search, and it is easy to see early success in prototypes. How-

ever, the long-term costs for upkeep of mobile applications can 

be prohibitive. The first problem with mobile applications are 

the rapidly changing operating system versions and features. It 

is fairly common for an application to stop working after a soft-

ware update, particularly for Android devices. Even a minor 

content change to a mobile app, in iOS or Android, often re-

quires adapting the app to new libraries and procedures. These 

changes must also undergo review by Apple or Google, often 

taking weeks to get an update to end users. To mitigate these 

issues and simplify the maintenance process, a researcher can 

rely on a web-based framework, such as Apache Cordova or 

Expo Mobile. These platforms can create up-to-date, native 

code for mobile devices, while using the same or similar code 

base for web-based instantiations of the software. However, the 

choice of framework can have a major impact on upkeep. For 

example, Expo relies on the application to be built from source 

libraries on the fly, making it difficult to containerize. Where 

an app could normally be pre-baked to a respectable 10MB or 

less in file size, these applications tend to be closer to 1GB, in-

creasing the server load and required disk space. 

A third type of application is the data-intensive project. For ex-

ample, projects that collect or analyze sensor and wearables 

data can easily accumulate hundreds of thousands of records 

per month. While cloud storage is cheap, it is not unlimited, and 

these types of applications can lead to runaway storage costs. 

More importantly, an active project can induce long query 

times. With scalable containers, the bottleneck for performance 

is typically the database server, so these applications can have 

a noticeable system-wide impact. In these cases, it is important 

to consider the nature of the application to determine the appro-

priate long-term management plan. For applications that do not 

need granular data values, it can be beneficial to capture data 

less frequently. It is also important to assess the likely patterns 

of data use. If recent data is used differently than historical data, 

it can be worthwhile to create a rollover or staging mechanism 

to reduce the system burden for long-term sustainability.   

Discussion 

Using the methods above, it is possible to host hundreds or even 

thousands of applications on a small cluster of cloud servers. 

However, it is vital that applications be designed appropriately 

to gain the full benefits of the shared platform. For example, a 

typical project stack within our environment consumes approx-

imately 20MB of RAM. By contrast, a single WordPress site 

can consume 180MB of RAM or more. The choice of technol-

ogies and framework can have a substantial effect on the overall 

scale (and recurring costs) of the platform. Therefore, it is 

worthwhile to dedicate considerable effort toward reducing the 

resource usage of an application prior to long-term hosting. 

It is also prudent to consider the optimal reliability for a given 

project. In some cases, a study involves a pre-determined audi-

ence or limited period of performance. Other projects may be 

prone to bursts of heavy traffic or computing activity requiring 

increased availability. Our cyberinfrastructure can accommo-

date either of these situations, but it is not cost-effective to try 

to do both within the same swarm or node subset. One easy 

method of increasing reliability is to create additional master 

nodes, which can take over in the event of node failure. How-

ever, this increases the processing and node requirements, 

which may not be appropriate for prototype applications or low-

fidelity studies. Matching the needs of a study to the appropriate 

level of reliability can dramatically impact overall costs. 

Even with the proposed methods to reduce equipment costs, 

there is a sizeable labor component to software hosting. Servers 

need monitoring and maintenance; software requires bug fixes 

and feature changes. Man-hours are orders of magnitude more 

expensive than equipment, so it is imperative that the systems 

are designed for minimal upkeep and attention. Before a full-

scale swarm can be populated with hundreds of applications, it 

will be necessary to design an appropriate project management 

system (PMS). The PMS needs to allow researchers to directly 

manage and deploy software solutions without the intervention 

of IT staff, while enforcing the access controls and permissions 

of users on the swarm. Continuous Integration technologies can 

provide users with the automated deployment options and have 

the benefit of enforcing compliance tests such as security or 

web accessibility prior to software publishing. These tools are 

an important next step in the development of a reliable and sus-

tainable cyber infrastructure platform. 

Conclusions 

We have established a novel, cloud-based architecture to pro-

vide long-term, sustainable hosting and support for research 

software. We have demonstrated methods to lower costs and 

enhance the capabilities for many types of research. Further 

study is needed to determine whether computationally-inten-

sive settings, such as machine learning or big data studies are 

appropriate for a shared, cloud-based architecture. While there 

are still many challenges ahead, we are optimistic that the use 

of such an architecture within a multi-institutional honest-bro-

ker organization, such as Hekademeia Research Solutions, can 

provide affordable options to create and maintain web and mo-

bile applications, data collection tools, and other software plat-

forms for research. Indeed, we are currently engaged with two 

other major research universities to host multiple software-

based research projects. 
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