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Abstract 

To protect vital health program funds from being paid out on 
services that are wasteful and inconsistent with medical prac-
tices, government healthcare insurance programs need to vali-
date the integrity of claims submitted by providers for reim-
bursement. However, due the complexity of healthcare billing 
policies and the lack of coded rules, maintaining “integrity” is 
a labor-intensive task, often narrow-scope and expensive. We 
propose an approach that combines deep learning and an on-
tology to support the extraction of actionable knowledge on 
benefit rules from regulatory healthcare policy text. We demon-
strate its feasibility even in the presence of small ground truth 
labeled data provided by policy investigators. Leveraging deep 
learning and rich ontological information enables the system to 
learn from human corrections and capture better benefit rules 
from policy text, beyond just using a deterministic approach 
based on pre-defined textual and semantic pattterns.  
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Introduction 

Health and Social care Programs have a major impact on out-

comes for vulnerable citizens. To ensure resources are distrib-

uted fairly to citizens, and are not lost to Fraud, Waste or Abuse 

(FWA), these Programs typically have large bodies of policy 

text describing benefit rules. In practice, however, only a frac-

tion of these rules get automated and the lack of coded rules 

creates major problems down-stream. Firstly, regulators tasked 

with protecting the Program’s financial integrity cannot get an 

overview of the “compliance landscape” to identify FWA and 

prioritize investigations. Secondly, FWA detection is typically 

based on statistical and data-analytic approaches [1][2], making 

difficult for investigators to determine which (if any) policy 

may have been violated. Finally, those being regulated (Provid-

ers) have no fast/automatic way to check the compliance of 

their claims, leading to friction, cost and avoidable errors. 

Recently, the “Rules as Code” movement [3] has emerged as a 

response to these issues. It calls for policy rules to be published 

as “digital twins”— in both human and machine-consumable 

form— making them amenable to automated compliance-

checking, fairness-checking, loophole identification, and what-

if analysis, as well as building trust through transparency. 

In this vein, our prior work [4][5] describes a deterministic ap-

proach to extracting “benefit rules” from healthcare policy, in a 

 
1 Ontology and benefit rules to be made available in 
https://github.com/IBM/rules_extraction_from_healthcare_policy 

form that is both human and machine consumable. Each rule is 

associated to the policy text from where it was extracted, which 

facilitates easy review/validation and correction by medically-

aware users before use. 

In this paper, we move this approach forward by proposing a 

model to (1) learn from the addition/correction of new rules and 

(2) identify new elements, beyond the “vocabulary” on which 

the model was trained. 

To achieve this, we combine neural and symbolic approaches. 

A neural NLP model learns which spans, i.e., one or more con-

secutive words, in policy text are rule conditions— e.g. services 

that are “mutually exclusive” (not payable when billed to-

gether). A domain ontology built with investigators [5], sup-

ports both human understanding/oversight and acts as a blue-

print for constructing semantically-meaningful rules from the 

conditions labeled by the neural model— e.g., determining if a 

complete “mutually exclusive” rule can be formed. To train the 

NLP model, we use a small set of 141 benefit rules identified 

by professional investigators in dental policy documents from 

two US states1. For each rule, we annotate the rule text with 

ontology-aligned labels describing the different condition 

types. Two models are then trained: first, a classifier model to 

assess which paragraphs contain benefit rules (many do not), 

and second a model to predict and label specific spans.  

We evaluate results against a gold standard of policy rules ob-

tained from professional investigators and compare the results 

against the existing deterministic baseline, presented in [5] and 

find that this fusion of neural and symbolic approaches (1) im-

proves extraction performance, with a small up-front labeling 

cost and a surprisingly small set of benefit rules provided by 

investigators; and (2) correctly labels previously-unseen ele-

ments in rule conditions—  e.g. healthcare services that are not 

(yet) present in our ontology or terminology.  In short, this ap-

proach shows good promise for lowering extraction cost and 

improving rule quality, ultimately helping investigators to re-

view health and social care policies and support the extraction 

of actionable rules. 

Methods 

Benefit Rule Extraction Pipeline 

In this section, we briefly describe the existent pipeline to ex-

tract benefit rules from healthcare policy. First, an off-the-shelf 

PDF conversion tool [6] is used to obtain an HTML  
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representation with headings, paragraphs and sentences. These 

paragraphs are filtered via a BERT-based classifier. No other 

text pre-processing or cleaning is performed. The classifier 

simply filters out policy paragraphs that do not appear to con-

tain any rules, thereby reducing noise, time, and computational 

load for the rest of the pipeline.   

Each paragraph may contain zero, one, or more benefit rules. 

An example of a paragraph with two different benefit rules 

types can be seen in Figure 1. While the wording of policy texts 

can differ significantly between geographical regions or policy 

topics, all policies set out similar guidelines based on common 

compliance concepts such as eligible patients (e.g., based on 

age, medical history), billable places of service (e.g., home, 

hospital), maximum billable units of service or monetary 

amounts per member in a given period, services that should not 

be billed together, etc. This shared conceptualization behind 

benefit rules is captured in a domain ontology. The ontology is 

used to ensure semantically-meaningful rules are extracted 

from the policy text. For example, the property “applicable ser-

vice” expects a type of billed service as its value, or that there 

can only be one applicable time period per benefit rule (max 

cardinality of 1). The ontology also links to other data sources 

with relevant terminology, such as codes for billable dental ser-

vices [8] or places of service [9], and guides the annotation and 

extraction of relevant domain entities, relationships and the log-

ical constraints that underpin them.  

Expert-labeled datasets are expensive to develop (and neces-

sarily small), therefore a deterministic approach to extract rules 

from policy texts was proposed in [5], where after annotating 

the mentions of entities and relations based on the ontology, 

NLP tools are applied to identify functional dependencies be-

tween the annotated ontological terms as well as their semantic 

role in the sentence (actions, agent, theme of the action, polar-

ity, etc.). Then, based on a combination of linguistic rules and 

domain-independent semantic patterns to reason over the ontol-

ogy, textual dependencies are translated into meaningful bene-

fit rules. For example, a number will be interpreted as a unit, 

amount of time, or age limitation by considering its semantic 

proximity to an annotated property for an age range, a unit limit, 

or time period (both expecting a number as the range). 

The extracted benefit rules are presented to the user in the form 

of editable condition – entity/value pairs, that enable investiga-

tors to review the extracted rule against the policy text and cor-

rect extraction errors and omissions. These validated benefit 

rules form a shared store of high-quality, machine and human 

readable rules, making for a more transparent rule creation and 

consumption. However, the deterministic extraction is unable 

to learn from those human corrections, and the approach is lim-

ited by, first, the coverage of the ontology annotators and the 

need to map policy text to known ontology entities; and second, 

the use of a rule-based approach to identify linguistic depend-

encies and semantic patterns among those relevant entities that 

can be transformed into semantically meaningful connections 

to build a benefit rule.  

 

Figure 1: Benefit rules extracted from a paragraph in a dental 
policy [7]. On top, a Mutually Exclusive rule on services that 
cannot be billed together in a given period. On the bottom, a 
Service Limitation rule on the units of service a provider may 

bill per member over a time period   

We propose a deep learning approach to predict textual spans 

that constitute conditions of a benefit rule.  That is, not just say-

ing that a “comprehensive oral evaluation” is an instance of a 

service, but that in the context of the sentence it has two distinct 

roles simultaneously: an applicable service and a mutually ex-

clusive non-reimbursable service, for a Service Limitation rule 

and Mutually Exclusive rule respectively. 

Benefit Rule Span Prediction 

We consider the rule extraction as a span prediction problem. 

Let   be a sentence with m tokens and V the set 

of labels. Each token t is associated with one or more labels 

from V.  Assume that we have k labels in our problem, i.e., |V| 

= k, e.g., for our policy rule extraction, we have k=27 labels 

with examples provided in Figure 2 which shows sentences 

with associated labels.  

A span can have more than one label. Therefore, we use BERT 

[10] as a backbone network and we add a multi-class classifi-

cation head on the top of it to enable multi-class classification. 

We trained the models with Adam optimization [13], mini-

batch size 8, learning rate 0.00001 and 100 epochs. 

 

G. Picco et al. / Learning Insurance Benefit Rules from Policy Texts with Small Labeled Data 293



 

Figure 2 Data augmentation: given an input labeled sentence, 
a new sentence is created by randomly sampling the spans 

from the set of spans with the same labels in V. 

Data Augmentation. Investigators created benefit rules that 

were used to manually label span fragments in 141 policy par-

agraphs using the 27 labels in V, one for each benefit rule con-

dition defined in our ontology, that our deep learning models 

can work on. The label schema was selected to fully cover all 

relevant conditions that may be included in a benefit rule, but 

also that is simple enough for human annotators. While this pro-

cess can be automated to some extent, human supervision is 

needed to match the values in a benefit rule to spans in the sen-

tence. Our main challenge during the labeling process is the dif-

ference in the way annotators interpret the concepts in an unfa-

miliar domain. Time-consuming cross-checks were carried out 

to ensure the consistency between labels provided by different 

annotators in the team. We ensured each label was reviewed by 

at least two annotators based on a set of annotation gudeliness 

to ensure consistency. For example, the label billing-common-
ality covers the span “per dental practice” (including the prep-

osition “per”), as billing-commonality is the condition used by 

domain experts to indicate that the claims need to be billed by 

the same provider. 

Given the fact that acquisition of labeled data for a new policy 

is expensive, we consider enriching the available labeled data 

using data augmentation. In a data augmentation algorithm, an 

input sentence is perturbed to create a new sentence that is ex-

pected to have the same meaning or preserving the semantic 

structure of the sentence but may accept a slightly difference in 

lexical representations. Generally speaking, data augmentation 

for text is a hard problem because a small perturbation of the 

sentence can create a sentence with a completely new meaning 

or with a different semantic structure. Therefore, we propose a 

controlled data augmentation to preserve the main semantic 

structure of the rules where the spans are perturbed but the la-

bels are persisted. 

For each label v in V, let Span(v) be the collection of all the 

spans that are labeled as v in our training data. For every input 

labeled sentence among our 141 paragraphs, we look at each 

span with label v in the sentence and randomly replace the given 

span with a random span sampled from the set Span(v) to create 

a new sentence used for training purposes. This data augmenta-

tion method is simple but it is very effective as demonstrated in 

the experiments. Figure 2 shows an example with an input sen-

tence and a newly generated sentence using this method. Since 

the structure of the sentence is preserved, swapping spans be-

tween sentences helps the model generalize better as it is forced 

to learn the hidden structure of the input rather than remember-

ing the actual span contents.  

Model fine-tuning. Our work relies on pretrained language 

models such as BERT. Since BERT is trained on public domain 

texts, a popular practice when dealing with domain specific text 

is to fine-tune  these models with domain specific texts. We 

consider two approaches to this. The first one fine-tunes BERT 

using all policy texts available in our data. The second method 

only fine-tunes BERT on the rules. Figure 3 shows the span 

prediction F1 scores of different approaches. The combination 

of BERT, data augmentation and fine-tuning with rule text 

yields the best result so it is the default choice in our experi-

ments. 

 
Figure 3 F1 score of different approaches for span prediction 

in a 5-fold cross-validation settings. The combination of 
BERT, data augmentation and fine-tuning with rule text yields 

consistent improvement over BERT alone. 

Ontology-based span prediction to rules 

The predicted labels, which capture the structural information 

of the rules, are combined with the entity annotations to con-

struct the benefit rules. For each sentence, all the labels pre-

dicted by the span predictor that are compatible with a type of 

benefit rule (e.g., those corresponding to potential conditions in 

a Mutually Exclusive rule as defined in the ontology) are clus-

tered. Subsequently, we identify for each cluster the entity an-

notations that overlap with each label and whose type is com-

patible with the range of the predicted label, which corresponds 

to a condition defined in the ontology.  

At this point, for each label there will be one or more matching 

annotations that are used as a value to build the benefit rule. If 

there is no match, the text covered by the label can be used to 

infer a new entity of the type expected by the condition label. 

In our example there are two clusters, corresponding to a Mu-

tually Exclusive and a Service Limitation benefit rule. The span 

predictor predicts the condition label “hasMutuallyExclu-

siveNonReimbursableService” that covers the text “compre-

hensive oral evaluation” (Figure 2) and is compatible with a 

Mutually Exclusive rule. The ontology annotators identify 

"d0150 - comprehensive oral evaluation" as an instance of a 

“Procedure Code” type and the annotated span overlaps with 

the span of the predicted label. Moreover, the type of the in-

stance is compatible with the expected range of the condition in 

the ontology, therefore, the condition (whose display name in 

the ontology is defined as “mutually exclusive - non-reimburs-

able service” as shown in Figure 1) is assigned the instance 

value “d0150 - comprehensive oral evaluation” and will be one 

of the conditions of the built benefit rule. 

In the example, the textual span "seen by a dentist" is labeled 

as the non-reimbursable service, while “seen by a dentist” ob-

viously does not correspond to an actual instance of a billed 

service in the ontology, in the context of this sentence investi-

gators interpret it as "any dental service". The prediction cor-

rectly recognizes that pattern from similar labeled rules. The 

extractor can optionally be configured to allow the creation of 

benefit rules with predicted values even if unrecognized in the 

ontology, while this may introduce inaccurate results (affecting 

precision) it does favour recall. Investigators can then validate 

unknown values while validating the benefit rule and either 

match them to existent ones (eg., in this case the service “all 

dental services”) or optionally update the ontology with new 

instances and/or lexicalizations. 
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Results 

Experimental Setup 

We evaluate the system’s accuracy in terms of precision/recall 

when extracting rules from text [5]. The evaluations are carried 

out  with respect to a gold-standard of 141 rules created in con-

sultation with our policy investigators for two US healthcare 

policies in the dental domain and compared with respect to the 

rule-based approach used as baseline. Given the small number 

of training instances, we obtained span prediction for 141 gold 

sentences in a 5-fold cross-validation setting. This technique 

guarantees that predictions are always made without overlap-

ping between training and test sets. The span predictions for 

sentences that do not overlap with the 141 gold sentences (i.e., 

those that do not contain a benefit rule and are not filtered out 

by the classifier) are computed using a model trained with all 

the gold sentences. Instead, the span prediction for sentences s 

that overlap with 141 gold sentences are computed using a 

model trained without s. 

Evaluation 

We compare results with two configurations: default and opti-

mal. Modifiable configuration includes selecting whether or not 

to add values not recognized by the ontology, choosing to use 

the classifier, filters, and rule-based consolidation strategies 

predefined in the pipeline [5]. The default configuration was 

reported in [5], while the optimal configuration is identified by 

optimizing for F1, using the Optuna package [11].  

In the first experiment, using the default configuration, we com-

pare the learning methods with the rule-based approaches. Ta-

ble 1 reports the results for both Learn+Uv and Learn methods, 

which correspond respectively to the variant of the method with 

and without adding unknown spans to the final benefit rule. We 

also report results for execution with (+C) and without the clas-

sifier.  

In the second experiment we compare the rule-based method 

(Rule) with the deep learning approach (Learn), reporting the 

maximum performances obtained by both methods, optimizing 

the pipeline configuration using the Optuna package and select-

ing the best execution from 200 trials in terms of F1 score. This 

experiment analyzes the two systems to the best of their perfor-

mance and allows comparison of the approaches independently 

of the default configuration.   

 

Table 1 – Method comparison using the default configuration: 
Learning method (Learn) and Rule-based baseline (Rule). 

(+Uv) Indicates where the option to keep spans unrecognized 
in the ontology was used (+C) Indicated if the classifier was 

active in the pipeline 

Method Precison Recall F1 
Learn 69.85 58.23 62.26 
Learn+Uv 56.48 69.17 61.53 

Learn+C 78.1 54.78 62.82 
Learn+C+Uv 67.19 66.36 66.73 
Rule 60.57 67 63.34 

Rule+C 69.55 63.72 66.47 

 

 

Table 2 – Method comparison using the optimal configura-
tion: Learning method (Learn). Learning method combined 

with Rule-based method (Learn+Rule) and Rule-based 
method (Rule). 

Method Precison Recall F1 
Learn 79.56 66 72.03 

Rule 76.54 67.37 71.57 

Learn+Rule 70.77 73.75 72.22 

Discussion and future work  

Results reported in Table 1 and Table 2 demonstrate that the 

neural approach achieves comparable performance compared 

to the rule-based method, learning correlations from a surpris-

ingly small set of benefit rules provided by investigators. Table 

1 shows the effect of adding or ignoring values that are not part 

of the ontology in the extracted benefit rules and the trade-off 

between precision and recall. Intuitively, adding values that are 

not part of the ontology increases the recall of the system, ex-

tracting a greater number of rules present in the gold-standard, 

while reducing the precision of the system. The classifier, on 

the other hand, has the opposite effect, as it increases precision 

but reduces recall. This behavior is expected since the classifier 

in the pipeline operates as a filter, removing the paragraphs with 

low probability of containing benefit rules. 

Table 2 shows the results of various methods in the optimal 

configuration environment. The precision of the learning 

method is higher than that of the rule-based method, and the 

recall values of the two methods are roughly similar. Although 

the precision of the Learning method combined with the Rule-

based method has decreased, the recall has increased signifi-

cantly from 67% to 73.75%. The F1 score is 72.22% which 

shows that the combination of the Learning method and the 

Rule-based method can obtain excellent comprehensive perfor-

mance. 

Furthermore, in Table 1, the use of the span prediction together 

with the classifier (Learn+C+Uv) achieved the best result due 

to the presence of entities that are not captured yet in the domain 

ontology and/or textual patterns that are notably hard to extract 

based on pre-defined linguistic and semantic patterns to build a 

benefit rule. The result demonstrated that machines are able to 

learn from examples of benefit rules validated by our investiga-

tors, without the need of linguistic and semantic experts to add 

more hand-crafted linguistic rules or reasoning patterns in the 

system [5].  

The learning method presented requires an initial modeling 

phase, where the main concepts and relationships are defined 

and formalized in an ontology. While many of the concepts are 

shared and the ontology contains valid common concepts when 

applied in the same domain, as in the case of insurance policy 

texts of different US states, in order to apply the method to a 

new domain it is necessary to repeat the modeling phase. In fu-

ture work we could analyze the use of state-of-art ontology 

learning system, such as [12], combined with the BERT-based 

extractor to extract rules in a different domain. 

Conclusions 

Governments and businesses everywhere are automating policy 

enforcement. When they do, the resulting rules becomes the 

“effective policy” that most citizens actually experience in their 

lives. That comes with great opportunities for fairness — both 

in enabling policy to be applied consistently at scale and in de-

fending scarce resources from wasteful practices not compliant 
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to policy. This latter point is often missed but it is critical in 

ensuring that vulnerable people can access the services they 

need. However, organizations that automate policy enforce-

ment have a responsibility to ensure that there is no “translation 

of intent” errors when translating from policy, to business re-

quirements, to rules, to code. A recent OECD report [3] on this 

issue identifies several ways to tackle this, some visionary (sim-

ultaneous code and policy development) and others practical 

(use AI and automation to shorten the route from policy to 

code). Our system takes this latter approach. This meant devel-

oping a structured representation of the benefit rules that feels 

natural and understandable to policy-aware users and is 

grounded to specific policy text. This core representation is cap-

tured by the ontology and is critical in ensuring that non-tech-

nical policy-aware individuals can understand and correct the 

rules. 

In this paper we proposed a learning approach to predict benefit 

rule conditions from curated, small labeled examples that can 

be added by policy-aware users, and that can be assembled into 

actionable benefit rules using the ontology as a blueprint. We 

determined that the learning approach achieves similar perfor-

mance to a pattern-based approach. While the training set is 

currently small, due to the need for domain experts and the cost 

of manual policy labeling, it is expected this will expand as in-

vestigators use the system to review and curate more benefit 

rules in any given policy domain. 

We believe this work shows the potential impact of leveraging 

NLP and AI technologies with expert knowledge in an area 

where human understanding and control are important AI de-

sign concerns, such as safeguarding the integrity of govern-

ment healthcare insurance programs. 

This combination empowers investigators to be more effective 

and consistent in formalizing and validating human and ma-

chine interpretable rules at scale, and enables the system to 

learn from those corrections and improve its performance over 

time. 
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