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Abstract 

Machine learning algorithms that derive predictive models are 
useful in predicting patient outcomes under uncertainty. These 
are often “population” algorithms which optimize a static 
model to predict well on average for individuals in the popula-
tion; however, population models may predict poorly for indi-
viduals that differ from the average. Personalized machine 
learning algorithms seek to optimize predictive performance 
for every patient by tailoring a patient-specific model to each 
individual.  

Ensembles of decision trees often outperform single decision 
tree models, but ensembles of personalized models like decision 
paths have received little investigation. We present a novel per-
sonalized ensemble, called Lazy Random Forest (LazyRF), 
which consists of bagged randomized decision paths optimized 
for the individual for whom a prediction will be made.  

LazyRF outperformed single and bagged decision paths and 
demonstrated comparable predictive performance to a popula-
tion random forest method in terms of discrimination on clini-
cal and genomic data while also producing simpler models than 
the population random forest. 
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Introduction 

Personalized medicine calls for care that is tailored to each in-

dividual, and predictive models can be useful for supporting 

such care [19]. Using machine learning algorithms, predictive 

models can be trained on large biomedical datasets, and these 

models can then be applied using patient information to per-

form inference and make predictions for individuals [14]. 

Most algorithms fit a model (or ensemble of models) using a 

training dataset in an “eager” fashion, constructing the model 

prior to encountering a new individual for whom a prediction 

will be made [18]. The model is optimized to predict well on 

average for any future member of the population represented by 

the training data.  However, important but uncommon features 

may not be captured by a “population” model derived using an 

eager machine learning algorithm, and this may result in lower 

predictive performance for certain subgroups of the population. 

The “average best choice” may not be the best choice for an 

individual [2]. This is a major shortcoming when using predic-

tive models to support personalized medicine, where the goal is 

to achieve optimal care for each individual [4]. 

An alternative paradigm is to fit a model using information 

from the individual for whom a prediction will be made [17]. 

This “lazy” approach delays model fitting until information re-

garding the features present in the individual of interest are 

known, and a personalized predictive model is tailored to that 

individual. This personalized model is optimized to predict well 

for the individual, rather than the population on average. When 

that individual is a patient, the personalized model is called a 

patient-specific model. 

Prior Work 

Personalized algorithms have been developed that produce pa-

tient-specific ensembles in several ways. Random forest is an 

ensemble population machine learning algorithm that produces 

randomized bagged decision trees [3], and one personalized 

random forest approach uses personalized bootstrap datasets to 

derive randomized decision trees [12,21]. Another approach de-

rives patient-specific base models where each model in the en-

semble is a patient-specific decision tree tailored to the individ-

ual of interest. The Lazy Decision Tree (LazyDT) method was 

the first algorithm that derived personalized decision tree mod-

els using features present in the the individual of interest [9]. 

Since the personalized decision tree is  a single path, we refer 

to the personalized decision tree model as a decision path 

model.  

Several decision path algorithms have been described in the lit-

erature and have been shown to have superior predictive per-

formance compared to population decision tree algorithms 

[7,9,10,15,18]. However, little work has been done on ensem-

bles of patient-specific decision paths. Fern et al. introduced a 

boosting algorithm to construct boosted ensembles of La-

zyDTs, and found that this algorithm resulted in higher accu-

racy than single and bagged LazyDTs [6]. Margineantu et al. 

used a bagging algorithm with lazy option trees which resulted 

in better calibrated probability estimates than corresponding 

population algorithms [13]. We are interested in using other en-

semble approaches to improve the performance of decision path 

models, and to our knowledge no personalized random forest 

algorithm has been described that derives ensembles of patient-

specific decision paths.  

Hypothesis 

We hypothesized that a personalized random forest consisting 

of randomized patient-specific decision paths would outper-

form single decision paths and population random forest mod-

els in terms of discrimination and would also produce simpler 

models. 
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Methods 

Our novel algorithm is called Lazy Random Forest (LazyRF). 

In this section, we first provide details of LazyRF and the algo-

rithms used for comparison. We then describe the experimental 

approach used to evaluate the algorithms’ performance. 

Algorithmic Methods 

The base method used in LazyRF is a randomized patient-spe-

cific decision path that optimizes an entropy score. The ran-

domized decision path (RDP) algorithm differs from a regular 

decision path in terms of the search, as RDP only evaluates ran-

dom subsets of features from the patient of interest (known as 

the test case) when constructing a decision path.  

The pseudocode of the LazyRF algorithm is given in Figure 1. 

First, we describe the structure of a decision path model, then 

we provide details on the search and score used by the RDP 

algorithm. We then explain how LazyRF trains RDPs on boot-

strap datasets to produce the patient-specific ensemble. We 

conclude with descriptions of the comparison algorithms. 

Decision Path – Model Structure 

A decision path model M is represented as M = (S, θ), where S 

is a path and θ are the parameters of the probability distributions 

over the target variable T. Let V = (X1, X2, ... , Xi, ... , Xn) be a 

list of the n variables describing training dataset D. Let a feature 

Xi = xi be defined as a variable-value pair. A decision path S 

consists of a conjunction of q features such that S = (Xa = xa  
Xb = xb  ...  Xj = xj  ...  Xq = xq). The variable list VS = (Xa, 
Xb, ... , Xj, ... , Xq) is a subset of V, and the value list vS = (xa, xb, 
... , xj, ... , xq) consists of the values of test case (patient of inter-

est) for the variables in VS. The target variable T can take r pos-

sible values, denoted by (t1, t2, ... , tk, ... , tr). The parameter list 

θ = (θ1, θ2, ... , θk, ... , θr) denotes the r probabilities for the 

distribution P(T | VS = vS) over T. The values of those proba-

bilities are estimated from DS, which contains the training cases  

 

in D for which VS = vS. We use the maximum likelihood esti-

mator to calculate the probabilities θ associated with a path S. 

The estimate for probability  is given by 

 ,            (1) 

where  is the number of training cases in DS, and  is the 

number of those cases in DS for which T = tk. 

Randomized Decision Path – Model Search 

An RDP model for a test case is constructed by performing a 

greedy hill-climbing search, adding features from the test case 

one at a time that optimize an information gain score, relative 

to a bootstrapped dataset. The score is calculated using DS, the 

set of training cases that share all the features in path S. 

Starting with an empty path S, the algorithm randomly samples 

 features that are present in the test case. For each candidate 

feature Xi = xi, the feature is temporarily appended to path S to 

produce candidate path S’. The subset of training cases that 

share all the features in S’ is referred to as DS’. If DS’ is empty 

(i.e., no training cases satisfy S’), the algorithm proceeds to the 

next feature. If DS’ is not empty, the algorithm calculates the 

entropy of S’ with DS’ and determines the difference in entropy 

between S and S’. This difference is the information gain score 

of candidate path S’ containing candidate feature Xi = xi. 

The highest scoring candidate feature is added to S, and a new 

random subset of  features is sampled. The search stops 

when the score cannot be improved, and a new bootstrapped 

dataset is considered (see below). 

Randomized Decision Path – Model Score 

For a path S and data DS that contains the training cases that 

satisfy the path S, the entropy is given by: 

, (2) 

LazyRF (D, Test, B) 

Inputs: D is a training dataset consisting of m training cases and n variables and a target variable T 

  Test is the test case (patient of interest) for which a prediction will be made 

  B is the number of models in the ensemble 
 

1 F ← empty forest of paths 

2 P ← empty list of predictions 

3 Generate B bootstrap datasets by randomly drawing m training cases from D with replacement 

4 FOR each bootstrap dataset: 

5     S ← empty path 

6     LOOP: 

7         BestScore ← 0; BestFeature ←  

8  Randomly select  candidate features from Test 
9  FOR each randomly selected candidate feature X = x:  

10      S’← add X = x to S 
11      DS’ ← training cases in bootstrap dataset that satisfy S’ 
12      IF DS’ ≠  : 

13          Score ← EntScore (S) - EntScore(S’) calculated using Equation 3 

14          IF Score > BestScore: BestFeature ← X = x  
15      IF BestFeature ≠  :  

16          Add BestFeature to S  

17      ELSE: Exit from LOOP 

18     F ← add S to F 
19     P ← add PS(T | Test) which is estimated using Equation 1 from training data that satisfy S 
 

Output: Forest of paths F and PF(T | Test) calculated as the mean of the predictions in P  

Figure 1 – Pseudocode of LazyRF algorithm. 
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where P(T = tk ) is the proportion of the dataset DS that 

includes training cases that have the value tk for T. Using Equa-

tion 1 to calculate these probabilities gives us the following en-

tropy score: 

EntScore(S) = ,           (3) 

where N is the number of training cases in DS, r is the number 

of values the target variable T can take, and Nk is the number of 

training cases in DS that take the kth value of T. The algorithm 

selects the candidate feature corresponding to candidate path S’ 
that results in the greatest reduction of entropy (which is equiv-

alent to the greatest information gain) for the current path S. 

Lazy Random Forest 

LazyRF produces an ensemble of RDPs by training multiple 

patient-specific models using bootstrap datasets. A bootstrap 

dataset is produced from a training dataset of m training cases 

by randomly sampling with replacement m times from the train-

ing dataset. The result is a bootstrap dataset containing on av-

erage 63% of the training cases from the original training da-

taset, with some of those cases appearing multiple times [5].   

LazyRF constructs 25 bootstrap datasets, and an RDP is trained 

on each bootstrap. The ensemble prediction of LazyRF is cal-

culated as the average of the individual path predictions. 

Comparison Algorithms 

We compared LazyRF to three algorithms: a single non-ran-

domized decision path, a bagged ensemble of 25 non-random-

ized decision paths, and a standard population random forest of 

randomized decision trees.  

The single non-randomized decision path (DP) differs from the 

LazyRF algorithm in three ways: it builds a single decision path 

model (rather than an ensemble), it uses the entire training da-

taset (rather than bootstrap datasets), and it considers all avail-

able features (rather than a random subset of features, described 

in line 8 of Figure 1). The structure, search, and score of DP are 

otherwise unaltered. 

The ensemble of bagged non-randomized decision paths 

(BagDP) differs from the LazyRF algorithm in only one way: it 

considers all available features (rather than a random subset of 

features, described in line 8 of Figure 1). Like LazyRF, BagDP 

trains decision path models on 25 bootstrap datasets, and the 

decision path structure, search, and score are otherwise unal-

tered. Like LazyRF, the prediction of BagDP is calculated as 

the average of the individual path predictions. 

The population random forest (RF) consists of randomized de-

cision trees (which are population models) trained on 25 boot-

strap datasets. A randomized decision tree that optimizes infor-

mation gain in terms of entropy is trained on each bootstrap da-

taset. Like LazyRF, the ensemble prediction of RF is calculated 

as the average of the individual tree predictions. 

Experimental Methods 

Datasets 

Six clinical and genomic datasets were used for evaluation. 

These datasets consist of real patient information collected for 

research purposes. Details regarding the datasets are described 

in Table 1. All datasets had binary target variables and were 

divided into approximately 80%/20% train-test splits with sim-

ilar proportions of positive cases (i.e., individuals who have dis-

ease) in training and test datasets. 

The chronic pancreatitis dataset is comprised of single nucleo-

tide variants from individuals with chronic pancreatitis and 

from healthy controls, and the target is presence of chronic pan-

creatitis [20]. The pneumonia dataset is comprised of clinical, 

laboratory, and radiographic findings of patients admitted with 

community acquired pneumonia, and the target is whether a pa-

tient experienced a dire outcome (defined as death within 30 

days of presentation, intensive care unit admission, or another 

severe complication) [8]. The sepsis datasets are comprised of 

demographics, clinical findings, and genetic and inflammatory 

markers of patients admitted with community acquired pneu-

monia [11]. The target of the sepsis-d dataset is death within 90 

days of enrollment, and the target of the sepsis-s dataset is de-

velopment of severe sepsis during hospitalization. The heart 

failure dataset is comprised of demographics and clinical, la-

boratory, radiographic, and electrocardiographic findings of pa-

tients admitted with heart failure [1]. The target of heart-failure-

d is death during hospitalization, and the target of heart-failure-

c is development of one or more serious complications (includ-

ing death) during hospitalization. 

Table 1 – Brief descriptions of datasets. 

Dataset # Vars # Cases # Positive (%) 
chronic-pancreatitis 142 2201 980 (44.5%) 

pneumonia 156 2287 261 (11.4%) 

sepsis-d 19 1673 189 (11.3%) 

sepsis-s 18 1673 478 (28.6%) 

heart-failure-d 17 11,178 500 (4.47%) 

heart-failure-c 20 11,178 1255 (11.2%) 

Experimental Protocols 

We evaluated the algorithms in terms of discrimination as 

measured by area under the receiver operating characteristic 

curve (AUROC) and model complexity as measured by mean 

predictive path length, defined as the number of features in the 

path used for prediction.  

For each dataset, we compared AUROCs of LazyRF vs. DP, 

LazyRF vs. BagDP, and Lazy RF vs. RF using DeLong’s test. 

We compared mean AUROCs and mean path lengths of  La-

zyRF vs. DP, LazyRF vs. BagDP, and Lazy RF vs. RF  on the 

six datasets using the Wilcoxon signed-rank test. We imple-

mented the algorithms with Python (version 3.7) and performed 

analysis of results in R using “wilcox.test” and “pROC” [16]. 

We performed all experiments on a MacBook Pro with a 3.3 

GHz Dual-Core Intel Core i5 processor and 16GM of RAM, 

running the 64-bit macOS Catalina operating system. 

Results 

In this section, we present the AUROCs and mean path lengths 

of the algorithms on the six datasets. 

Discrimination  

The mean AUROCs were 0.733 for LazyRF, 0.583 for DP, 

0.680 for BagDP, and 0.767 for RF. AUROCs for each algo-

rithm and dataset are shown in Table 2. When the performance 

of the personalized algorithms was compared pairwise using 

DeLong’s test, LazyRF had statistically significantly higher 

AUROCs than DP for five out of six datasets (indicated in bold 

in Table 2), and LazyRF had statistically significantly higher 

AUROCs than BagDP for three out of six datasets (indicated in 

italics in Table 2). When the performance of the random forest 

algorithms were compared pairwise using DeLong’s test, RF 

had a statistically significantly higher AUROC than LazyRF for 

one out of six datasets (indicated by an asterisk in Table 2).   
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Table 2 – AUROCs of DP, BagDP, LazyRF and RF algo-
rithms. Statistically significantly better performance indicated 

by: bold for Lazy RF vs. DP, italics for LazyRF vs. BagDP, 
and asterisk for LazyRF vs. RF. 

Dataset DP BagDP LazyRF RF 
chronic-pancreatitis 0.736 0.814 0.847 0.814 

pneumonia 0.512 0.546 0.558 0.822* 

sepsis-d 0.641 0.748 0.843 0.844 

sepsis-s 0.551 0.743 0.772 0.736 

heart-failure-d 0.515 0.624 0.665 0.656 

heart-failure-c 0.545 0.605 0.712 0.735 

mean 0.583 0.680 0.733 0.767 

Applying the Wilcoxon signed-rank test to all six datasets, we 

found that LazyRF had a statistically significantly higher mean 

AUROC than DP (p = 0.03) and BagDP (p = 0.03) at the 0.05 

level. 

When mean AUROCs of LazyRF and RF were compared with 

the Wilcoxon signed-rank test, there was no statistically signif-

icant difference at the 0.05 level.  

Model Complexity 

The mean path lengths were 4.20 for LazyRF, 4.21 for DP, 3.75 

for BagDP, and 6.83 for RF. Mean path lengths for each algo-

rithm and dataset are shown in Table 3. When mean path 

lengths were compared with the Wilcoxon signed-rank test, La-

zyRF had statistically significantly shorter mean path lengths 

than RF at the 0.05 level (p = 0.03). LazyRF did not have sta-

tistically significantly different mean path lengths than DP or 

BagDP at the 0.05 level.   

Table 3 – Mean path lengths of DP, BagDP, LazyRF and RF 
algorithms. 

Dataset DP BagDP LazyRF RF 
chronic-pancreatitis 2.44  2.31 3.51 5.22 

pneumonia 2.36  2.12 4.26 5.47 

sepsis-d 3.15  2.79 3.21 5.92 

sepsis-s 3.95  3.56 3.12 5.68 

heart-failure-d 5.96  5.17 6.05 9.68 

heart-failure-c 7.42  6.54 5.06 8.99 

mean 4.21 3.75 4.20 6.83 

Discussion 

LazyRF had the highest predictive performance of the person-

alized algorithms as measured by AUROC. Ensemble methods 

like bagging and random forest have been found to improve 

predictive performance over single models like decision trees 

by reducing variance without increasing bias, resulting in lower 

predictive error. As the LazyRF algorithm trains multiple mod-

els on bootstrap datasets and incorporates randomized feature 

selection, the models in LazyRF are possibly more diverse and 

may result in lower variance than DP or BagDP. 

LazyRF and RF did not have statistically significantly different 

predictive performance as measured by AUROC. Previous 

work has demonstrated that decision paths can result in higher 

accuracies and AUROCs than population decision trees, indi-

cating that personalization can improve predictive performance 

of models. In the case of random forest, however, we did not 

find that personalization improved predictive performance over 

the population algorithm. We did find that personalization re-

sulted in more concise models than RF. By producing simpler 

models, the personalized ensemble may be easier to compre-

hend than the population ensemble, but this requires further ex-

perimental exploration. 

This finding is consistent with the results of Fern et al [6]. They 

found that boosting decision paths resulted in higher predictive 

performance than bagged and single decision paths. When com-

pared to boosted decision trees, however, boosted decision 

paths resulted in simpler models with comparable predictive 

performance. It is an open question why the improvements from 

personalization over population models that have been found in 

single model paradigms may not extend to ensembles in terms 

of predictive performance. 

One limitation of this work is that the algorithms were only 

evaluated on data collected for research purposes. It is possible 

that the algorithms perform differently on electronic health rec-

ord data or other real-world data. The datasets were limited in 

number and scope, and they are not open access. Additionally, 

the current version of LazyRF can only handle discrete data, so 

any continuous data requires discretization prior to use with La-

zyRF. Further evaluation on a wider range of data would en-

hance the generalizability of our findings. 

In addition to testing performance on a broader set of more het-

erogenous data, future work includes incorporating other types 

of decision paths, such as those that use Bayesian scoring, into 

LazyRF methodology. Further inquiry is also needed to deter-

mine why ensembles of decision paths like LazyRF and boosted 

LazyDTs do not improve performance metrics like accuracy 

and AUROC over corresponding population ensembles.  

Conclusions 

In conclusion, applying a random forest ensemble approach to 

personalized decision paths is associated with improvements in 

predictive performance over single and bagged decision paths. 

Personalization of random forest through the use of patient-spe-

cific decision paths is associated with comparable predictive 

performance and simpler models when compared to a popula-

tion random forest approach. These findings provide support 

for the potential use of personalized random forest algorithms 

for patient-specific prediction. 
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