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Abstract 

Precision oncology is expected to improve selection of target-
ed therapies, tailored to individual patients and ultimately 
improve cancer patients’ outcomes. Several cancer genetics 
knowledge databases have been successfully developed for 
such purposes, including CIViC and OncoKB, with active 
community-based curations and scoring of genetic-treatment 
evidences. Although many studies were conducted based on 
each knowledge base respectively, the integrative analysis 
across both knowledge bases remains largely unexplored. 
Thus, there exists an urgent need for a heterogeneous preci-
sion oncology knowledge resource with computational power 
to support drug repurposing discovery in a timely manner, 
especially for life-threatening cancer. In this pilot study, we 
built a heterogeneous precision oncology knowledge resource 
(POKR) by integrating CIViC and OncoKB, in order to incor-
porate unique information contained in each knowledge base 
and make associations amongst biomedical entities (e.g., 
gene, drug, disease) computable and measurable via training 
POKR graph embeddings. All the relevant codes, database 
dump files, and pre-trained POKR embeddings can be ac-
cessed through the following URL: 
https://github.com/shenfc/POKR. 
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Introduction 

Cancer is responsible for millions of deaths worldwide every 

year. Although significant progress has been achieved in can-

cer medicine, many issues remain to be addressed for improv-

ing cancer therapy. For this reason, oncological research is 

putting a lot of effort towards finding new and efficient thera-

pies. Precision oncology [1] is one of the research directions 

that aims to improve selection of targeted therapies tailored to 

individual patients and ultimately improve cancer patients’ 

outcomes. With the advancement of computational capacity 

and power, in silico drug discovery [2] further accelerates the 

process and provides timely support for cancer researchers. 

Several cancer genetics knowledge databases have been suc-

cessfully developed for such purposes, including Clinical In-

terpretation of Variants in Cancer (CIViC) [3] and OncoKB 

[4], with active community-based curations and scoring of 

genetic-treatment evidences. Many researchers leveraged 

these two knowledge resources in their studies or applications. 

For example, Bertucci et al [5]. used OncoKB to determine the 

actionability of somatic genetic alterations in a metastatic 

breast cancer genomic characterization study. Janjigian et al 

[6]. utilized OncoKB to infer the oncogenic effect and clinical 

actionability of individual somatic mutations in a study to 

build genetic predictors of therapeutic response in esoph-

agogastric cancer. In addition, CIViCpy [7] was designed by 

Wagner et al as a Python software development and analysis 

toolkit for the CIViC knowledgebase. Lever et al [8]. used the 

CIViC database to curate clinically relevant cancer biomarkers 

mined from 121,589 PubMed abstracts and full-text papers. 

According to a comparative analysis, although CIViC and 

OncoKB have a highly similar goal and creation process and 

also acquire the data from the same origin, each one holds a 

substantial amount of unique information [9]. Therefore, inte-

grative analysis of multimodal features buried in the two 

knowledge resources holds potential power to facilitate preci-

sion oncology research (e.g., cancer drug repurposing). How-

ever, such efforts are largely unexplored. 

In this pilot study, we sought to integrate the heterogeneous 

precision oncology knowledge resources, CIViC and On-

coKB, in order to incorporate unique information contained in 

each knowledge base and make associations amongst biomed-

ical entities (e.g., gene, drug, disease) computable and meas-

urable. Specifically, we first merged entities contained in both 

resources and stored the enriched precision oncology 

knowledge resource (POKR) into a graph database named 

Neo4j. A graph database can best represent the connected 

network and  is more intuitive when it comes to a sophisticat-

ed network not only for explicit relationships but implicit rela-

tionships. Therefore, we choose neo4j as our carrier for our 

graph database. We then trained graph embeddings for the 

POKR and made quantitative and qualitative analysis for the 

vectorized entities. On one hand, the POKR stored in Neo4j 

can provide intuitive visualization and graph topological anal-

ysis for non-techinical users. On the other, the POKR embed-

dings can be viewed as a pre-trained data resources to assist 

technical users to conduct further investigation for different 

research purposes in precision oncology. 

In the following, we first introduce materials used in this 

study. Next, we describe the methods for constructing POKR 

and corresponding graph embeddings. We then present eval-

uation results followed by discussion. 

Background and Materials 

CIViC 

CIViC is a community-driven open-source resource for Clini-

cal Interpretation of Variants in Cancer. The goal of CIViC is 

to disseminate knowledge with regard to precision medicine.  

It can be viewed as a knowledge graph that stores large 
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amount of cancer-related genes, variants, drugs, disease and 

their associations/links. In this study, we utilized the CIViC 

1/1/2021 version, which contains 2,586 nodes and 6,724 edg-

es. 

OncoKB 

OncoKB is a precision oncology knowledge repository that 

contains information related to the effects and treatment im-

plications of specific cancer gene alterations. All the data is 

organized into a knowledge graph format. In this study, we 

extracted 377 nodes and 1,916 edges from the OncoKB ver-

sion that was released on 11/12/2020. 

Neo4j 

Neo4j is a graph database that is able to not only store the data 

itself but also store the relationships between data. In this 

study, all the graph data contained in CIViC and OncoKB 

were stored in Neo4j. Combining both database in Neo4j gives 

us 2,808 nodes and 8,464 edges in total. 

Methods 

The overall workflow is generally divided into three steps. As 

shown in Figure 1, we first integrated CIViC and OncoKB. 

We then dumped the integrated knowledge resource into a 

graph knowledge base, Neo4j. In addition, we trained the cor-

responding knowledge graph embeddings for the integrated 

knowledge resource. 

 

Figure 1. Overall study workflow. 

Data Integration and Graph Generation 

The OncoKB and CIViC data we acquired is stored in csv 

format with every row representing one connected relationship 

between two entities. Although we used csv files in our study, 

we could utilize all kinds of files as long as the file contains 

the entity and relationship between entities. 

The entity is denoted as a node in our graph database and the 

relationship between entities is denoted as an edge between 

two nodes. The nodes can be labeled as “gene”, “disease”, 

“variant of a gene” or “drug for a disease”.  Other than “la-

bel”, a node also has other customized optional attributes such 

as “name” or anything related to that node.  

We read all the csv files into neo4j by rows using Cypher (a 

language built for Neo4j), and we then got a well-labeled, 

connected, informative graph database. By asserting unique-

ness on each node in Neo4j, we removed duplicate nodes or 

relationships. With this clean and concise graph database, it is 

easy to export the final integrated dataset for generating em-

beddings. Since we leveraged the node2vec algorithm in this 

study to calculate the embeddings, we focused on the connec-

tion between the source node and target node. Therefore, we 

exported a file consisting of the source node and the corre-

sponding target node, with which we will be able to train em-

beddings that best represent the network. Figure 2 shows an 

example of how the data is stored in Neo4j. Nodes in the same 

color represents same type of the node. The label on the link 

represents the type of relationship between nodes. For in-

stance, the gene “ERG” may cause disease Ewing Sarcoma 

and disease Prostate Carcinoma. We can extract information 

such as all relationships connected with a certain gene, or all 

the diseases that can be cured by a certain medicine, or extract 

one type of relationships that we are interested in.  

 

Figure 2. A peek from Neo4j with the red node as a gene 
named ERG and all its relationships with other nodes that 

connect with ERG. 

Computable Graph Embeddings Generation 

We applied the node2vec model to generate embeddings. 

Node2vec [10] is introduced to graph data for embeddings 

from word2vec, which is originally applied on natural lan-

guage processing.  Node2vec uses biased random walk to 

sample linear paths in a graph. A path is similar to a sentence 

in an article; nodes along the path resembles the words in a 

sentence in word2vec. By using neural network to predict the 

adjacent node within certain window of the target node, we 

can learn the embeddings for the target node from the weight 

matrix. 

Node2vec used second-order random walk to sample a cus-

tomized length path. To specify the process, we call these 

three nodes involved in the random walk source node , in-

termediate node ,  and target node . Let denote the th 

node in the walk. Node  are generated by the following dis-

tribution: 

 

 

Where  is an unnormalized transition probability, Z 

is a constant for normalization. Given the weight over edge 

 as w ,  can be calculated as:  

 

where  is a biased term introduced in node2vec in-

volving two hyperpaprameters p and q to balance between 

breadth-first search and depth-first search during random 

walk. Suppose the shortest distance between  and  is de-

noted as ,  can be calculated like this: 
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After sampling paths from the graph, we apply the skip-gram 

model to train embeddings for each node using stochastic gra-

dient descent to optimize the loss function: 

 

Where  denotes all the sampled neighbors of . 

Embedding optimization 

Since different combinations of hyperparameters will give us 

different embeddings, it is crucial to find the optimal embed-

dings for different purposes. We proposed two ways of finding 

the optimal embeddings: a). link prediction, which focuses 

more on connections between nodes and b). clustering, which 

takes account of the grouping of similar nodes. 

a) Link prediction 

Link prediction provides one way to determine the optimal 

embeddings. The idea is to predict the relationship between 

two nodes and use the performance of the prediction to evalu-

ate the quality of the node embeddings. Given two nodes 

and their embeddings a representation be-

tween nodes  can be calculated using either one of these 

4 operations, namely Hadamard, average, weighted L1, 

weighted L2:  

 

 

  

  

These representations were used to train a supervised binary 

classification task, in order to determine if there is a connec-

tion between nodes and . 

Embeddings can provide good link prediction results indicates 

that this set of node embeddings are encoded with most of the 

node connection information; it also implies these embeddings 

can help us find implicit connections between nodes. 

b) Clustering  

Clustering is another interesting way of selecting embeddings 

since it focuses more on the similarity information over the 

nodes. In this study, we used the k-means model [11] to clus-

ter vectorized nodes. K-means model is an unsupervised learn-

ing model where we need to decide a k value before the train-

ing. The process can be summarized into three steps: select a 

k-value; initialize the k centroid randomly; use the centroids to 

cluster all the nodes and find the average in each cluster to 

reestablish the new centroids. 

We used the silhouette score and purity score to evaluate the 

clusters. silhouette coefficient for each cluster is calculated 

using the mean intro-cluster distance  and the mean nearest-

cluster distance  as . The silhouette score is the mean 

of the silhouette coefficient for all the clusters. The silhouette 

score tells us if clusters have clear boundaries and enough 

distance between themselves. The silhouette score focuses on 

the relationships between each cluster while the purity score 

focuses on the inside of a cluster to see the ratio of the nodes 

within one cluster that are coming from same category. 

To render the high-dimensional embeddings into a lower-

dimensional space for us to better visualize the network clus-

tering result, we selected the t-distributed stochastic neighbor 

embedding (t-SNE) [12]. t-SNE projects high-dimensional 

embeddings into 2-dimentional space after clustering. Figure 3 

shows an example of such clustering after dimension reduc-

tion using our dataset. 

 

Figure 3. Optimal clustering embeddings renders into 2-
dimensional space. Different color presents different cluster 

the nodes belong to. 

Results 

For link prediction task, the hyperparameters used in the ex-

periments are window size of 10, number of walks of 5, length 

of walk of 5, dimension of embedding of 128, return hyperpa-

rameter p of 5 and in-out hyperparameter q of 0.65. For clus-

tering task, the hyperparameters used in the experiments are 

window size  of 5, number of walks of 10, length of walk of 

10, dimension of embedding of 50, return hyperparameter p of 

0.2, in-out hyperparameter q of 0.2, number of clusters k of 8. 

Based on our experience, random forest is able to achieve an 

optimal performance among common classification algo-

rithms. Therefore, we chose random forest as our classifica-

tion model to train on edge embeddings. For each representa-

tion between 2 nodes, label = 1 indicates there is an edge be-

tween these two nodes; label = 0 indicates there is no edge 

between these two nodes. We split the dataset into 60%, 10% 

and 30% for training, validation and testing for all the positive 

examples, while randomly sampling the same amount of nega-

tive examples and splitting it in the same ratio for training, 

validation and testing to balance the dataset. 

 

Table 1. Evaluation results for the 4 edge embeddings op-
eration 

 Precision Recall F1 score 

Hadamard 0.88 0.88 0.88 

Average 0.88 0.88 0.88 

L1 0.86 0.85 0.85 

L2 0.86 0.86 0.86 

To evaluate the performance, we plotted the receiver-

operating characteristic (ROC) curve and computed the area 
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under the ROC curve. Moreover, we used precision, recall, F1 

score to further quantify the link prediction performance 

among 4 different edge embedding operations. As shown in 

Table 1, both the Hadamard and Average operations achieved 

the optimal performance of 0.88 F1 score while L2 yielded a 

suboptimal result of 0.86 F1 score.  As shown in Figure 4, 

both Hadamard and Average achieved the optimal ROAUC 

score of 0.93, and L1 and L2 produced the same ROAUC 

score of 0.91. 

 

Figure 4. ROC score for 4 different operations. 

For clustering task, the optimal silhouette score is 0.4 and the 

optimal purity score is 0.56. As shown in Table 2, we also 

picked some clusters and listed the contained biomedical enti-

ties accordingly. A full list of clusters could be downloaded 

from: https://github.com/shenfc/POKR. 

 Table 2. Selected clusters with biomedical entities 

Cluster # Biomedical Entities Entity Type 

2 Endometrial Serous Adeno-

carcinoma 

Disease 

KRAS:A146 Variant 

Docetaxel Drug 

5 Thyroid Gland Follicular Car-

cinoma 

Disease 

Fluorouracil Drug 

CDK4 Gene 

Discussion and Future Work 

In this work, Neo4j provides a way to explore the topology of 

the precision oncology graph and visualize both the nodes and 

relationships, which is friendly to non-technical users for 

knowledge discovery. In addition, Neo4j provides various 

built-in functions to generate graph embeddings. However, in 

this study, we sought to construct graph embeddings from 

scratch by ourselves. The rationale is that we aimed to gener-

ate embeddings with different purposes using different tasks 

(link prediction and clustering), therefore, training embed-

dings from scratch provided us more flexibilities compared to 

using Neo4j built-in functions. 

Link prediction is able to measure the embeddings using a 

binary classification task. However, the connections between 

nodes are solely based on the topological structure of the inte-

grated POKR but without incorporating any prior knowledge 

as weights from existing ontologies. In the future, it would be 

very interesting to assign different weightage over the edge 

based on prior knowledge and build enhanced graph embed-

dings. 

The silhouette and purity scores provide ways to quantify the 

clustering performance. However, in order to evaluate cluster 

results qualitatively, it is necessary to deep dive into each 

cluster for use case studies. As shown in Table 2, we detected 

Endometrial Serous Adenocarcinoma (ESA), KRAS:A146, 

and Docetaxel in cluster #2. After conducting literature re-

views, we found that KRAS:A146 has a strong association 

with ESA [13], and Docetaxel is one of the common drugs to 

treat ESA in practice [14]. Similarly, in cluster #5, we ob-

served that Thyroid Gland Follicular Carcinoma (TGFC) is 

associated with gene CDK4, which could be approved in [15]. 

We also found that TGFC could be treated by Fluorouracil 

from the cluster, which is recorded in one issue of the PDQ 

cancer information summaries [16]. In this pilot study, we 

only conducted a preliminary qualitative evaluation by manual 

literature search. It would be better to invite domain experts to 

evaluate the clustering results further. In future work, we plan 

to follow this direction and involve experts in the loop. 

Conclusions 

In this pilot study, we built a heterogeneous precision oncolo-

gy knowledge resource, POKR, by integrating CIViC and 

OncoKB, in order to incorporate unique information contained 

in each knowledge base and make associations amongst bio-

medical entities (e.g., gene, drug, disease) computable and 

measurable via training POKR graph embeddings. In general, 

we stored the POKR in two formats: 1) a Neo4j visualizable 

graph database, and 2) POKR embeddings for computational 

needs. Specifically, we trained two embeddings based on a 

link prediction task and a clustering task. Results indicated 

that the integration of heterogeneous knowledge resources 

hold potential to facilitate knowledge discovery in precision 

oncology research. 
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