
Translating the Observational Medical Outcomes Partnership - Common Data Model
(OMOP-CDM) Electronic Health Records to an OWL Ontology

Lamy Jean-Baptistea, Abdelmalek Mouazera, Karima Sedkia, Rosy Tsoprab,c,d

a Université Sorbonne Paris Nord, LIMICS, Sorbonne Université, INSERM, UMR 1142, F-93000, Bobigny, France
 b INSERM, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Information Sciences to support

Personalized Medicine, F-75006 Paris, France
c Department of Medical Informatics, Hôpital Européen Georges-Pompidou, AP-HP, Paris, France

d INRIA Paris, 75012 Paris, France

Abstract
The heterogeneity of electronic health records model is a major
problem: it is necessary to gather data from various models for
clinical research, but also for clinical decision support. The
Observational Medical Outcomes Partnership - Common Data
Model (OMOP-CDM) has emerged as a standard model for
structuring health records populated from various other
sources. This model is proposed as a relational database
schema. However, in the field of decision support, formal on-
tologies are commonly used. In this paper, we propose a trans-
lation of OMOP-CDM into an ontology, and we explore the
utility of the semantic web for structuring EHR in a clinical de-
cision support perspective, and the use of the SPARQL lan-
guage for querying health records. The resulting ontology is
available online.
Keywords:
Medical Records, Electronic Health Records, Biological

Ontologies, SPARQL.

Introduction

Electronic health records (EHR) [1] lead to a major progress in

the storage, the transmission and the standardization of clinical

patient data. However, today, many EHR models and formats

exist, each software vendor proposing its own. This heteroge-

neity is a huge problem for research studies that need to collect

data from many EHRs, but also for clinical decision support

systems that need to be interfaced with many different EHRs.

In the last ten years, OMOP-CDM (Observational Medical Out-

comes Partnership - Common Data Model) [2] from the OHDSI

(Observational Health Data Sciences and Informatics) commu-

nity emerged as a common and simple EHR model, used to

structure clinical data extracted from various other EHR, in or-

der to facilitate clinical research studies. This model is proposed

as a relational database schema. A study showed that OMOP-

CDM has a higher content coverage than three other similar

data models [3]. More recently, OMOP-CDM has been consid-

ered for clinical decision support [4, 5].

In parallel, formal ontologies and the semantic web [6] have

emerged as a standard for the formalization of medical

knowledge. Ontologies permit formal reasoning but also facili-

tate the reuse of the data and the knowledge. In particular, the

interest of ontologies for validating EHR models have been

shown in the literature [7], and ontologies are commonly used

in decision support systems.

In this paper, we propose an OWL translation of the OMOP-

CDM model, and we explore the utility of the semantic web for

structuring EHR in a clinical decision support perspective. Our

objective is not to maintain a full compatibility with OMOP-

CDM database, but rather to structure an EHR as a formal on-

tology, grounding on the experience of OMOP-CDM. Conse-

quently, we will focus on the clinical part of OMOP-CDM, and

we will not consider the vocabulary part, because ontologies

offer native support for structuring hierarchical terminologies.

We will also consider the use of the SPARQL language for que-

rying health records, and compare it to the SQL language.

Material and methods

Material
We used OMOP-CDM version 6.0 [2]. In OMOP-CDM (Figure

1), patients and healthy volunteers are represented by the Per-

son table. Each Person may have zero, one or several Visit Oc-

currence, e.g. visits to a GP or hospital stays. Each Visit may

be associated with some diagnoses (Condition Occurrence),

tests (Measurement), medical procedures (Procedure Occur-

rence), drug prescriptions (Drug Exposure), etc. A higher level

of abstraction, Eras, is also provided, for facilitating epidemio-

logical studies. An Era groups one or more similar time periods

in a single entity; e.g. if a patient was prescribed Metformin for

3 months, and then after 3 months, Metformin was prescribed

again, there are two Drug Exposures (one per prescription), but

a single Drug Era. OMOP-CDM provides procedures for com-

puting Eras from the Drug Exposures and Condition Occur-

rences. Both Eras and lower-level entities (Condition Occur-

rence, Drug Exposure,...) are associated with a concept from a

medical terminology.

We used the Python programming language for parsing OMOP-

CDM specification and generating the OWL ontology, with the

Owlready ontology-oriented programming module [8, 9, 10].

Translating the database model to OWL
We translated the OMOP-CDM database model into an OWL

ontology, using an automatic Python script. Each table was

translated into a class, each field corresponding to an identifier

into an object property, and each non-identifier field into a data

property. SQL datatypes were translated into XML Schema

datatypes and assigned to the range of data properties. We also

added universal class restrictions, and existential class re-

strictions for fields marked as required in the OMOP-CDM

model. The translation may seem rather straightforward, but

two difficulties were encountered.

MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation
P. Otero et al. (Eds.)

© 2022 International Medical Informatics Association (IMIA) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI220035

76

First, contrary to SQL relational databases, OWL ontologies

support inheritance. In the OMOP-CDM model (Figure 1),

there are some obvious situations where inheritance could be

used, e.g. both Person and Provider are humans, and share iden-

tical attributes, such as gender or year of birth. Similarly, many

OMOP-CDM tables have attributes related to time: the date of

an event (e.g. a Condition Occurrence) or the start and end date

of a duration (e.g. a Drug Exposure).

We manually added superclasses, such as Base Person, Event

or Duration. Then, we wrote an automatic procedure in Python

that moves any attribute present in all the subclasses of a super-

class to that superclass. For instance, since Base Person has two

subclasses, Person and Provider, and since both Person and Pro-

vider have a gender attribute, then the gender attribute will be

moved to the Base Person class.

Second, in the OMOP-CDM model, the direction of relation is

often dictated by the relational database model, e.g. the relation

between Person and Drug Era is in the Drug Era Person direc-

tion, through the “person_id” field, because each Drug Era is

associated with a single Person (*-1 relation) while a Person

may be associated with several Drug Era (1-* relation), and the

relational model supports only *-1 relations. On the contrary,

OWL ontologies support both types of relations. Here, we

found it more intuitive to reverse the relation, in order to start

from the Person and then to obtain his Drug Era via the

has_drug_era relation. This places the patient at the center of

the model.

Moreover, in the database model, fields are defined within a

given table, e.g. the “person_id” field in the Drug Era table is

distinct from the “person_id” field in the Condition Era table,

despite them sharing the same name. This permits to search for

the Drug Era associated with a given patient, using the “per-

son_id” field in the Drug Era table. On the contrary, in ontolo-

gies, properties are first-order entities, independent from clas-

ses. Thus, if we create a “has_person” object property (corre-

sponding to “person_id” but named using ontology conven-

tions), it will be shared by all Era classes. If we search for the

Drug Era associated with a given patient, the “has_person”

property will thus return all Era, and thus we need to select only

those that are Drug Era. In a SPARQL query, this requires two

RDF triple patterns:

SELECT ?drug_era {
 ?drug_era a DrugEra .
 ?drug_era has_person <patient_x> .
}

If we reverse the direction of the relation, leading to the

“has_drug_era” property, we can now select specifically the

Drug Era associated with a given patient, simplifying the query

as follows:

SELECT ?drug_era {
 <patient_x> has_drug_era ?drug_era .
}

Therefore, we manually defined a list of relation to reverse, and

then an automatic procedure in Python for reversing those rela-

tions.

Figure 1– UML diagram showing the main tables and rela-
tions in OMOP-CDM.

Importing data
We imported the sample dataset with 1,000 patients from CMS

SynPUF, proposed on the OMOP-CDM website. When import-

ing the data, terminological concepts were mapped to UMLS.

We used the UMLS import functions from Owlready2 to ex-

tract the terminologies present in OMOP from UMLS version

2020AA, and to translate them to ontologies. In these ontolo-

gies, concepts are represented by classes, in order to allow in-

heritance between concepts. When a concept is present in the

OMOP data, the corresponding class is instantiated. For in-

stance, if a patient has a Condition Occurrence associated with

the “59621000” SNOMED CT code for Essential hypertension,

we create an instance of the “59621000” class and we associate

it with the Condition Occurrence. The original class can be ob-

tained via the rdf:type relation between the instance and the

class.

Querying the ontology
OMOP-CDM data are usually accessed via SQL queries, while

SPARQL is commonly used for ontologies. We compared the

length and the complexity of the queries in both languages, us-

ing various queries inspired by those proposed on the OMOP

website (http://cdmqueries.omop.org/), or by the recommenda-

tions of the STOPP/START guidelines [11] for detecting po-

tentially inappropriate prescribing in the elderly.

Figure 2– UML diagram showing the main classes and
relations in the ontology translation of OMOP-CDM.

L. Jean-Baptiste et al. / Translating the Observational Medical Outcomes Partnership 77

http://cdmqueries.omop.org/

Figure 3– Class hierarchy in the ontology translation of
OMOP-CDM.

Results

OMOP-CDM ontology translation
Figures 2 and 3 show the general model of the ontology. Com-

pared to Figure 1, notice the presence of inheritance, but also

the fact that the direction of many relations was changed. The

ontology consistency was verified using the Pellet reasoners. It

contains 49 classes, 226 properties and 5,016 RDF triples. After

importing the OMOP-CDM sample data, we obtained a total of

10,795,221 RDF triples, including 3,311,359 for terminologies.

The ontology is available online1 (Apache License 2.0, same

license as OMOP-CDM), as well as the Python scripts that gen-

erated it from the OMOP-CDM CSV specifications2 (GNU

LGPL license). The script can be customized through global

variables, e.g. to export only some parts of OMOP-CDM.

Using SPARQL for querying health records
Figure 4 shows an example of query, in both SQL and

SPARQL, inspired by the examples found in the OMOP web-

site. The SQL query is longer and more complex, due to the

presence of nested queries. The first nested query (SELECT

DISTINCT condition.person_id...) is motivated by the fact that

“age” appears three times in the outer query (in the SELECT,

the GROUP BY and the ORDER BY clauses). But SQL does

not allow creating variables and to assign value to them. The

nested query is thus here to avoid duplicating three times the

formula for computing the “age” value. On the contrary,

SPARQL allows the creations of variable, using the BIND

statement, hence removing the need for the nested query.

1 http://www.lesfleursdunormal.fr/static/_down-

loads/omop_cdm_v6.owl

The second nested query (SELECT

DISTINCT descendant_concept_id...) is used

to select all descendants of the desired con-

cept in the terminology. Thanks to property

path expressions, SPARQL offers an easier

way to select descendants, e.g. using the ex-

pression “rdfs:subClassOf*”, where “*”

means that zero, one or more subClassOf re-

lations must exist between a descendant con-

cept and the original concept. In addition, “/”

can be used in property path expressions to

chain several relations, e.g. “has_con-

cept/a/rdfs:subClassOf*/rdfs:label "Fracture

of bone of hip region"” means that ?condition

has for concept an instance of a class that is a

descendant of a class associated with the

“OMOP Hip Fracture 1” label.

Consequently, with SPARQL, nested queries

are no longer required here. This arguably

simplifies the query.

Using Owlready, the SPARQL query can be

executed on the OMOP sample dataset (1,000

patients, about 10 million RDF triples) in

about 0.31 second on a recent laptop com-

puter. In contrast, the SQL query can be exe-

cuted on the same dataset in about 0.35 sec-

ond using PostgresQL. This suggests that

SPARQL and ontologies are as efficient as

SQL and relational databases.

The semantic web also allows linking the data with other data

or knowledge very easily. For instance, the sample OMOP da-

taset use RXNORM for coding drug prescriptions, but the ATC

terminology (Anatomical, Therapeutical Chemical classifica-

tion of drugs) may be more practical when dealing with thera-

peutical classes (e.g. proton pump inhibitors, PPI, instead of

specific active principles such as omeprazole), especially when

implementing the rules found in clinical guidelines. With on-

tologies, it is easy to add relations with ATC in addition to the

existing relations with RXNORM: when importing the data, we

instantiated the RXNORM classes; we can state that the result-

ing instances also belong to the corresponding ATC classes by

adding new RDF triples. On the contrary, when using database,

one would need to add an extra table mapping RXNORM to

ATC for adding support for the ATC terminology. This would

complicate queries, with additional joints between the concept

table and the mapping table.

Figure 5 shows two examples of rules extracted from the

STOPP/START clinical guideline [11], and their implementa-

tion in SPARQL. We used SNOMED CT codes for disorders

and ATC codes for drugs. The first rule detects a simple drug-

disorder interaction between digoxin and heart failure. The sec-

ond rule is more complex. It involves aspirin, which has 3 ATC

codes; thus, we used a UNION clause for testing the 3 codes.

Moreover, the rule should not be triggered when a PPI is pre-

scribed concomitantly. Thus, we used a FILTER NOT EXISTS

clause to verify the absence of a PPI, with conditions on the

start and end dates of the two Drug Eras to verify the co-occur-

rence of the two treatments. Both rules were implemented as

SELECT queries that returns the patients and the Drug Era that

should be stopped.

2 https://bitbucket.org/jibalamy/owlready2/src/master/

pymedtermino2/omop_cdm/

L. Jean-Baptiste et al. / Translating the Observational Medical Outcomes Partnership78

http://www.lesfleursdunormal.fr/static/_downloads/omop_cdm_v6.owl
http://www.lesfleursdunormal.fr/static/_downloads/omop_cdm_v6.owl
https://bitbucket.org/jibalamy/owlready2/src/master/pymedtermino2/omop_cdm/
https://bitbucket.org/jibalamy/owlready2/src/master/pymedtermino2/omop_cdm/

When implementing STOPP/START rules, we found that

SPARQL lacks the IN SQL keyword. This keyword allows test-

ing whether a value is one of a set of given values. It is a short-

hand for multiple OR conditions. IN is commonly used when

several terms correspond to the desired concept, e.g. for testing

the 3 codes for aspirin in the ATC terminology, one may use

“aspirin IN ("BO1AC06", "AO1AD05", "NO1BA01")”. On the

contrary, SPARQL has no such keyword. Thus, in the same sit-

uation, we used UNION as seen above, which is much longer

and less practical.

Finally, notice that the precision of the queries remains the

same with SQL or SPARQL, both queries being semantically

equivalent and returning the same results.

Discussion

OMOP-CDM was initially developed for gathering in a single

model clinical data from heterogeneous sources, such as EHR

from different vendors, in order to facilitate clinical research.

However, clinical decision support is another situation where

one may need to merge clinical data from different models, e.g.
for a given patient, clinical data may be found in the EHR of

the GP, but also in the EHR of the hospital and even in the phar-

macy. In that situation, the use of OMOP-CDM seems a rele-

vant option. Moreover, the high-level abstractions proposed in

OMOP-CDM with Era are useful for clinical studies, but also

for decision support. For instance, Drug Eras allow computing

drug treatment durations, which are sometimes required for

supporting decision (e.g. for rule START E2 in

STOPP/START).

The use of ontologies for structuring EHR may not be relevant

for clinical research, because of the huge volume of data in-

volved, and the relational database format is well established

today in that community. On the contrary, for decision support,

the volume of data is often lower (after the eventual learning

phase for machine learning-based systems), because decision

support deals with a single patient at a time, and ontologies are

frequently used.

In the literature, a previous tentative exists for translating the

OMOP-CDM model to an ontology [12]. However, it does not

focus on the latest version of the model (6.0), and the translation

was limited to a raw conversion from database to OWL, without

adding inheritance and restrictions as we did, nor reversing re-

lations. Finally, since our translation is almost entirely auto-

matic, and performed by a Python script, it will be easy to up-

date the ontology for future versions of OMOP-CDM.

In the near future, we plan to use the proposed ontology for

structuring heterogeneous clinical data in a decision support

system for medication reviews. We also plan to implement tools

for importing into the proposed ontology clinical data in stand-

ard formats such as HL7 and FHIR.

Conclusions

In this paper, we proposed an OWL translation of the OMOP-

CDM relational database model for electronic health records.

We successfully used the resulting ontology for importing the

OMOP sample dataset. We also compared the use of the SQL

and SPARQL language for querying EHR data. We found that

SPARQL often permitted simpler queries, thanks to its ability

to deal with recursion and to define variables, and thanks to the

Database with SQL:

SELECT gender, age, count(*) num_patients FROM
 (SELECT DISTINCT condition.person_id, gender.concept_name As GENDER,
 EXTRACT(YEAR FROM CONDITION_ERA_START_DATE) - year_of_birth AS age
 FROM condition_era condition
 JOIN (SELECT DISTINCT descendant_concept_id
 FROM vocabulary.relationship
 JOIN vocabulary.concept_relationship rel USING(relationship_id)
 JOIN vocabulary.concept concept1 ON concept1.concept_id = concept_id_1
 JOIN vocabulary.concept_ancestor ON ancestor_concept_id = concept_id_2
 WHERE relationship_name = 'HOI contains SNOMED (OMOP)'
 AND concept1.concept_name = 'Fracture of bone of hip region'
) ON descendant_concept_id = condition_concept_id
 JOIN person ON person.person_id = condition.person_id
 JOIN vocabulary.concept gender ON gender.concept_id = gender_concept_id
)
GROUP BY gender, age ORDER BY gender, age

Ontology with SPARQL:

SELECT ?gender ?age (COUNT(DISTINCT ?patient) as ?num_patients) {
 ?patient omop_cdm:has_condition_era ?condition .
 ?condition omop_cdm:has_concept/a/rdfs:subClassOf*/rdfs:label

 "Fracture of bone of hip region" .
 ?patient omop_cdm:has_gender/a/rdfs:label ?gender .
 ?patient omop_cdm:year_of_birth ?birth_year .
 ?condition omop_cdm:start_date ?start .
 BIND(YEAR(?start) - ?birth_year AS ?age) .
}
GROUP BY ?gender ?age ORDER BY ?gender ?age

Figure 4– A query for listing genders and ages of the patients having hip fracture, in SQL (top) and SPARQL (bottom).

L. Jean-Baptiste et al. / Translating the Observational Medical Outcomes Partnership 79

ease with which ontologies can be enriched and connected to

other resources in the semantic web.

Acknowledgements

This work was funded by the French Research Agency (ANR)

through the ABiMed project [grant number ANR-20-CE19-

0017-02].

References

[1] Kataria S, Ravindran V. Electronic health records: a criti-

cal appraisal of strengths and limitations. The journal of
the Royal College of Physicians of Edinburgh.

2020;50(3):262–268.

[2] Reich C, Ryan P, Belenkaya R, Natarajan K, Blacketer C.

OMOP Common Data Model Specifications; 2018.

[3] Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus

MN. Evaluating common data models for use with a lon-

gitudinal community registry. J Biomed Inform.
2016;64:333–341.

[4] Unberath P, Prokosch HU, Gründner J, Erpenbeck M,

Maier C, Christoph J. EHR-Independent Predictive Deci-

sion Support Architecture Based on OMOP. Applied clin-
ical informatics. 2020;11(3):399–404.

[5] Gruendner J, Schwachhofer T, Sippl P, Wolf N,

Erpenbeck M, Gulden C, et al. KETOS: Clinical decision

support and machine learning as a service - A training and

deployment platform based on Docker, OMOP-CDM, and

FHIR Web Services. PloS one. 2019;14(10):e0223010.

[6] Schulz S, Jansen L. Formal ontologies in biomedical

knowledge representation. Yearb Med Inform.
2013;8:132–46.

[7] Martínez-Costa C, Schulz S. Validating EHR clinical

models using ontology patterns. J Biomed Inform.
2017;76:124–137.

[8] Lamy JB. Owlready: Ontology-oriented programming in

Python with automatic classification and high level con-

structs for biomedical ontologies. Artif Intell Med.

2017;80:11–28.

[9] Lamy JB. Ontologies with Python. Apress; 2021.

[10] Lamy JB. Ontology-Oriented Programming for Biomedi-

cal Informatics. Studies in health technology and infor-
matics (STC). 2016;221:64–68.

[11] O’Mahony D, O’Sullivan D, Byrne S, O’Connor MN,

Ryan C, Gallagher P. STOPP/START criteria for poten-

tially inappropriate prescribing in older people: version 2.

Age Ageing. 2015;44(2):213–8.

[12] Pacaci A, Gonul S, Sinaci AA, Yuksel M, Laleci Erturk-

men GB. A Semantic Transformation Methodology for

the Secondary Use of Observational Healthcare Data in

Postmarketing Safety Studies. Frontiers in pharmacol-
ogy. 2018;9:435.

Address for correspondence
Jean-Baptiste Lamy <jean-baptiste.lamy@univ-paris13.fr>, Bureau

149, UFR SMBH, 74 rue Marcel Cachin, 93017 Bobigny cedex,

France

STOPP B1: Stop digoxin for heart failure with normal systolic ventricular function (no clear evidence of benefit).

SELECT ?patient ?drug_era { # SPARQL query for rule STOPP B1
 ?patient omop_cdm:has_drug_era ?drug_era .
 ?drug_era omop_cdm:has_concept/a/rdfs:subClassOf* atc:C01AA05 .
 ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf*
snomed:84114007.
}

STOPP C2: Stop aspirin with a past history of peptic ulcer disease without concomitant PPI (proton pump inhibitor).

SELECT ?patient ?drug_era1 { # SPARQL query for rule STOPP C2
 ?patient omop_cdm:has_drug_era ?drug_era1 .
 ?drug_era1 omop_cdm:has_concept/a ?aspirin .
 { ?aspirin rdfs:subClassOf* atc:B01AC06 . }
 UNION { ?aspirin rdfs:subClassOf* atc:A01AD05 . }
 UNION { ?aspirin rdfs:subClassOf* atc:N01BA01 . }
 ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf*
 snomed:13200003.
 FILTER NOT EXISTS {
 ?patient omop_cdm:has_drug_era ?drug_era2 .
 ?drug_era2 omop_cdm:has_concept/a/rdfs:subClassOf* atc:A02BC . # PPI
 ?drug_era1 omop_cdm:start_date ?start1 .
 ?drug_era1 omop_cdm:end_date ?end1 .
 ?drug_era2 omop_cdm:start_date ?start2 .
 ?drug_era2 omop_cdm:end_date ?end2 .
 FILTER(?start1 < ?end2 && ?start2 < ?end1) .
 }
}

Figure 5– Two rules extracted from the STOPP/START clinical guideline, and their translation into SPARQL.

L. Jean-Baptiste et al. / Translating the Observational Medical Outcomes Partnership80

