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Abstract 
The heterogeneity of electronic health records model is a major 
problem: it is necessary to gather data from various models for 
clinical research, but also for clinical decision support. The 
Observational Medical Outcomes Partnership - Common Data 
Model (OMOP-CDM) has emerged as a standard model for 
structuring health records populated from various other 
sources. This model is proposed as a relational database 
schema. However, in the field of decision support, formal on-
tologies are commonly used. In this paper, we propose a trans-
lation of OMOP-CDM into an ontology, and we explore the 
utility of the semantic web for structuring EHR in a clinical de-
cision support perspective, and the use of the SPARQL lan-
guage for querying health records. The resulting ontology is 
available online. 
Keywords:  
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Ontologies, SPARQL. 

Introduction 

Electronic health records (EHR) [1] lead to a major progress in 

the storage, the transmission and the standardization of clinical 

patient data. However, today, many EHR models and formats 

exist, each software vendor proposing its own. This heteroge-

neity is a huge problem for research studies that need to collect 

data from many EHRs, but also for clinical decision support 

systems that need to be interfaced with many different EHRs. 

In the last ten years, OMOP-CDM (Observational Medical Out-

comes Partnership - Common Data Model) [2] from the OHDSI 

(Observational Health Data Sciences and Informatics) commu-

nity emerged as a common and simple EHR model, used to 

structure clinical data extracted from various other EHR, in or-

der to facilitate clinical research studies. This model is proposed 

as a relational database schema. A study showed that OMOP-

CDM has a higher content coverage than three other similar 

data models [3]. More recently, OMOP-CDM has been consid-

ered for clinical decision support [4, 5]. 

In parallel, formal ontologies and the semantic web [6] have 

emerged as a standard for the formalization of medical 

knowledge. Ontologies permit formal reasoning but also facili-

tate the reuse of the data and the knowledge. In particular, the 

interest of ontologies for validating EHR models have been 

shown in the literature [7], and ontologies are commonly used 

in decision support systems. 

In this paper, we propose an OWL translation of the OMOP-

CDM model, and we explore the utility of the semantic web for 

structuring EHR in a clinical decision support perspective. Our 

objective is not to maintain a full compatibility with OMOP-

CDM database, but rather to structure an EHR as a formal on-

tology, grounding on the experience of OMOP-CDM. Conse-

quently, we will focus on the clinical part of OMOP-CDM, and 

we will not consider the vocabulary part, because ontologies 

offer native support for structuring hierarchical terminologies. 

We will also consider the use of the SPARQL language for que-

rying health records, and compare it to the SQL language. 

Material and methods 

Material 
We used OMOP-CDM version 6.0 [2]. In OMOP-CDM (Figure 

1), patients and healthy volunteers are represented by the Per-

son table. Each Person may have zero, one or several Visit Oc-

currence, e.g. visits to a GP or hospital stays. Each Visit may 

be associated with some diagnoses (Condition Occurrence), 

tests (Measurement), medical procedures (Procedure Occur-

rence), drug prescriptions (Drug Exposure), etc. A higher level 

of abstraction, Eras, is also provided, for facilitating epidemio-

logical studies. An Era groups one or more similar time periods 

in a single entity; e.g. if a patient was prescribed Metformin for 

3 months, and then after 3 months, Metformin was prescribed 

again, there are two Drug Exposures (one per prescription), but 

a single Drug Era. OMOP-CDM provides procedures for com-

puting Eras from the Drug Exposures and Condition Occur-

rences. Both Eras and lower-level entities (Condition Occur-

rence, Drug Exposure,...) are associated with a concept from a 

medical terminology. 

We used the Python programming language for parsing OMOP-

CDM specification and generating the OWL ontology, with the 

Owlready ontology-oriented programming module [8, 9, 10]. 

Translating the database model to OWL 
We translated the OMOP-CDM database model into an OWL 

ontology, using an automatic Python script. Each table was 

translated into a class, each field corresponding to an identifier 

into an object property, and each non-identifier field into a data 

property. SQL datatypes were translated into XML Schema 

datatypes and assigned to the range of data properties. We also 

added universal class restrictions, and existential class re-

strictions for fields marked as required in the OMOP-CDM 

model. The translation may seem rather straightforward, but 

two difficulties were encountered. 
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First, contrary to SQL relational databases, OWL ontologies 

support inheritance. In the OMOP-CDM model (Figure 1), 

there are some obvious situations where inheritance could be 

used, e.g. both Person and Provider are humans, and share iden-

tical attributes, such as gender or year of birth. Similarly, many 

OMOP-CDM tables have attributes related to time: the date of 

an event (e.g. a Condition Occurrence) or the start and end date 

of a duration (e.g. a Drug Exposure). 

We manually added superclasses, such as Base Person, Event 

or Duration. Then, we wrote an automatic procedure in Python 

that moves any attribute present in all the subclasses of a super-

class to that superclass. For instance, since Base Person has two 

subclasses, Person and Provider, and since both Person and Pro-

vider have a gender attribute, then the gender attribute will be 

moved to the Base Person class. 

Second, in the OMOP-CDM model, the direction of relation is 

often dictated by the relational database model, e.g. the relation 

between Person and Drug Era is in the Drug Era  Person direc-

tion, through the “person_id” field, because each Drug Era is 

associated with a single Person (*-1 relation) while a Person 

may be associated with several Drug Era (1-* relation), and the 

relational model supports only *-1 relations. On the contrary, 

OWL ontologies support both types of relations. Here, we 

found it more intuitive to reverse the relation, in order to start 

from the Person and then to obtain his Drug Era via the 

has_drug_era relation. This places the patient at the center of 

the model. 

Moreover, in the database model, fields are defined within a 

given table, e.g. the “person_id” field in the Drug Era table is 

distinct from the “person_id” field in the Condition Era table, 

despite them sharing the same name. This permits to search for 

the Drug Era associated with a given patient, using the “per-

son_id” field in the Drug Era table. On the contrary, in ontolo-

gies, properties are first-order entities, independent from clas-

ses. Thus, if we create a “has_person” object property (corre-

sponding to “person_id” but named using ontology conven-

tions), it will be shared by all Era classes. If we search for the 

Drug Era associated with a given patient, the “has_person” 

property will thus return all Era, and thus we need to select only 

those that are Drug Era. In a SPARQL query, this requires two 

RDF triple patterns: 

SELECT ?drug_era { 
    ?drug_era a DrugEra . 
    ?drug_era has_person <patient_x> . 
} 

If we reverse the direction of the relation, leading to the 

“has_drug_era” property, we can now select specifically the 

Drug Era associated with a given patient, simplifying the query 

as follows: 

SELECT ?drug_era { 
    <patient_x> has_drug_era ?drug_era . 
} 

Therefore, we manually defined a list of relation to reverse, and 

then an automatic procedure in Python for reversing those rela-

tions. 

 

Figure 1– UML diagram showing the main tables and rela-
tions in OMOP-CDM. 

Importing data 
We imported the sample dataset with 1,000 patients from CMS 

SynPUF, proposed on the OMOP-CDM website. When import-

ing the data, terminological concepts were mapped to UMLS. 

We used the UMLS import functions from Owlready2 to ex-

tract the terminologies present in OMOP from UMLS version 

2020AA, and to translate them to ontologies. In these ontolo-

gies, concepts are represented by classes, in order to allow in-

heritance between concepts. When a concept is present in the 

OMOP data, the corresponding class is instantiated. For in-

stance, if a patient has a Condition Occurrence associated with 

the “59621000” SNOMED CT code for Essential hypertension, 

we create an instance of the “59621000” class and we associate 

it with the Condition Occurrence. The original class can be ob-

tained via the rdf:type relation between the instance and the 

class. 

Querying the ontology 
OMOP-CDM data are usually accessed via SQL queries, while 

SPARQL is commonly used for ontologies. We compared the 

length and the complexity of the queries in both languages, us-

ing various queries inspired by those proposed on the OMOP 

website (http://cdmqueries.omop.org/), or by the recommenda-

tions of the STOPP/START guidelines [11] for detecting po-

tentially inappropriate prescribing in the elderly. 

 

Figure 2– UML diagram showing the main classes and 
relations in the ontology translation of OMOP-CDM. 
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Figure 3– Class hierarchy in the ontology translation of 
OMOP-CDM. 

Results 

OMOP-CDM ontology translation 
Figures 2 and 3 show the general model of the ontology. Com-

pared to Figure 1, notice the presence of inheritance, but also 

the fact that the direction of many relations was changed. The 

ontology consistency was verified using the Pellet reasoners. It 

contains 49 classes, 226 properties and 5,016 RDF triples. After 

importing the OMOP-CDM sample data, we obtained a total of 

10,795,221 RDF triples, including 3,311,359 for terminologies. 

The ontology is available online1 (Apache License 2.0, same 

license as OMOP-CDM), as well as the Python scripts that gen-

erated it from the OMOP-CDM CSV specifications2 (GNU 

LGPL license). The script can be customized through global 

variables, e.g. to export only some parts of OMOP-CDM. 

Using SPARQL for querying health records 
Figure 4 shows an example of query, in both SQL and 

SPARQL, inspired by the examples found in the OMOP web-

site. The SQL query is longer and more complex, due to the 

presence of nested queries. The first nested query (SELECT 

DISTINCT condition.person_id...) is motivated by the fact that 

“age” appears three times in the outer query (in the SELECT, 

the GROUP BY and the ORDER BY clauses). But SQL does 

not allow creating variables and to assign value to them. The 

nested query is thus here to avoid duplicating three times the 

formula for computing the “age” value. On the contrary, 

SPARQL allows the creations of variable, using the BIND 

statement, hence removing the need for the nested query. 

 

1 http://www.lesfleursdunormal.fr/static/_down-

loads/omop_cdm_v6.owl 

The second nested query (SELECT 

DISTINCT descendant_concept_id...) is used 

to select all descendants of the desired con-

cept in the terminology. Thanks to property 

path expressions, SPARQL offers an easier 

way to select descendants, e.g. using the ex-

pression “rdfs:subClassOf*”, where “*” 

means that zero, one or more subClassOf re-

lations must exist between a descendant con-

cept and the original concept. In addition, “/” 

can be used in property path expressions to 

chain several relations, e.g. “has_con-

cept/a/rdfs:subClassOf*/rdfs:label "Fracture 

of bone of hip region"” means that ?condition 

has for concept an instance of a class that is a 

descendant of a class associated with the 

“OMOP Hip Fracture 1” label. 

Consequently, with SPARQL, nested queries 

are no longer required here. This arguably 

simplifies the query. 

Using Owlready, the SPARQL query can be 

executed on the OMOP sample dataset (1,000 

patients, about 10 million RDF triples) in 

about 0.31 second on a recent laptop com-

puter. In contrast, the SQL query can be exe-

cuted on the same dataset in about 0.35 sec-

ond using PostgresQL. This suggests that 

SPARQL and ontologies are as efficient as 

SQL and relational databases. 

The semantic web also allows linking the data with other data 

or knowledge very easily. For instance, the sample OMOP da-

taset use RXNORM for coding drug prescriptions, but the ATC 

terminology (Anatomical, Therapeutical Chemical classifica-

tion of drugs) may be more practical when dealing with thera-

peutical classes (e.g. proton pump inhibitors, PPI, instead of 

specific active principles such as omeprazole), especially when 

implementing the rules found in clinical guidelines. With on-

tologies, it is easy to add relations with ATC in addition to the 

existing relations with RXNORM: when importing the data, we 

instantiated the RXNORM classes; we can state that the result-

ing instances also belong to the corresponding ATC classes by 

adding new RDF triples. On the contrary, when using database, 

one would need to add an extra table mapping RXNORM to 

ATC for adding support for the ATC terminology. This would 

complicate queries, with additional joints between the concept 

table and the mapping table. 

Figure 5 shows two examples of rules extracted from the 

STOPP/START clinical guideline [11], and their implementa-

tion in SPARQL. We used SNOMED CT codes for disorders 

and ATC codes for drugs. The first rule detects a simple drug-

disorder interaction between digoxin and heart failure. The sec-

ond rule is more complex. It involves aspirin, which has 3 ATC 

codes; thus, we used a UNION clause for testing the 3 codes. 

Moreover, the rule should not be triggered when a PPI is pre-

scribed concomitantly. Thus, we used a FILTER NOT EXISTS 

clause to verify the absence of a PPI, with conditions on the 

start and end dates of the two Drug Eras to verify the co-occur-

rence of the two treatments. Both rules were implemented as 

SELECT queries that returns the patients and the Drug Era that 

should be stopped. 

2 https://bitbucket.org/jibalamy/owlready2/src/master/ 

pymedtermino2/omop_cdm/ 
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When implementing STOPP/START rules, we found that 

SPARQL lacks the IN SQL keyword. This keyword allows test-

ing whether a value is one of a set of given values. It is a short-

hand for multiple OR conditions. IN is commonly used when 

several terms correspond to the desired concept, e.g. for testing 

the 3 codes for aspirin in the ATC terminology, one may use 

“aspirin IN ("BO1AC06", "AO1AD05", "NO1BA01")”. On the 

contrary, SPARQL has no such keyword. Thus, in the same sit-

uation, we used UNION as seen above, which is much longer 

and less practical. 

Finally, notice that the precision of the queries remains the 

same with SQL or SPARQL, both queries being semantically 

equivalent and returning the same results. 

Discussion 

OMOP-CDM was initially developed for gathering in a single 

model clinical data from heterogeneous sources, such as EHR 

from different vendors, in order to facilitate clinical research. 

However, clinical decision support is another situation where 

one may need to merge clinical data from different models, e.g. 
for a given patient, clinical data may be found in the EHR of 

the GP, but also in the EHR of the hospital and even in the phar-

macy. In that situation, the use of OMOP-CDM seems a rele-

vant option. Moreover, the high-level abstractions proposed in 

OMOP-CDM with Era are useful for clinical studies, but also 

for decision support. For instance, Drug Eras allow computing 

drug treatment durations, which are sometimes required for 

supporting decision (e.g. for rule START E2 in 

STOPP/START). 

The use of ontologies for structuring EHR may not be relevant 

for clinical research, because of the huge volume of data in-

volved, and the relational database format is well established 

today in that community. On the contrary, for decision support, 

the volume of data is often lower (after the eventual learning 

phase for machine learning-based systems), because decision 

support deals with a single patient at a time, and ontologies are 

frequently used. 

In the literature, a previous tentative exists for translating the 

OMOP-CDM model to an ontology [12]. However, it does not 

focus on the latest version of the model (6.0), and the translation 

was limited to a raw conversion from database to OWL, without 

adding inheritance and restrictions as we did, nor reversing re-

lations. Finally, since our translation is almost entirely auto-

matic, and performed by a Python script, it will be easy to up-

date the ontology for future versions of OMOP-CDM. 

In the near future, we plan to use the proposed ontology for 

structuring heterogeneous clinical data in a decision support 

system for medication reviews. We also plan to implement tools 

for importing into the proposed ontology clinical data in stand-

ard formats such as HL7 and FHIR. 

Conclusions 

In this paper, we proposed an OWL translation of the OMOP-

CDM relational database model for electronic health records. 

We successfully used the resulting ontology for importing the 

OMOP sample dataset. We also compared the use of the SQL 

and SPARQL language for querying EHR data. We found that 

SPARQL often permitted simpler queries, thanks to its ability 

to deal with recursion and to define variables, and thanks to the 

Database with SQL: 
 
SELECT gender, age, count(*) num_patients FROM 
    ( SELECT DISTINCT condition.person_id, gender.concept_name As GENDER, 
                   EXTRACT( YEAR FROM CONDITION_ERA_START_DATE ) - year_of_birth AS age 
      FROM condition_era condition 
      JOIN ( SELECT DISTINCT descendant_concept_id 
             FROM vocabulary.relationship 
             JOIN vocabulary.concept_relationship rel USING( relationship_id )  
             JOIN vocabulary.concept concept1 ON concept1.concept_id = concept_id_1 
             JOIN vocabulary.concept_ancestor ON ancestor_concept_id = concept_id_2 
            WHERE relationship_name = 'HOI contains SNOMED (OMOP)' 
              AND concept1.concept_name = 'Fracture of bone of hip region' 
            ) ON descendant_concept_id = condition_concept_id 
      JOIN person ON person.person_id = condition.person_id 
      JOIN vocabulary.concept gender ON gender.concept_id = gender_concept_id 
    ) 
GROUP BY gender, age ORDER BY gender, age 
 

Ontology with SPARQL: 
 
SELECT ?gender ?age (COUNT(DISTINCT ?patient) as ?num_patients) { 
    ?patient omop_cdm:has_condition_era ?condition . 
    ?condition omop_cdm:has_concept/a/rdfs:subClassOf*/rdfs:label
 
                                                    "Fracture of bone of hip region" . 
    ?patient omop_cdm:has_gender/a/rdfs:label ?gender . 
    ?patient omop_cdm:year_of_birth ?birth_year . 
    ?condition omop_cdm:start_date ?start . 
    BIND(YEAR(?start) - ?birth_year AS ?age) . 
} 
GROUP BY ?gender ?age ORDER BY ?gender ?age 
 

Figure 4– A query for listing genders and ages of the patients having hip fracture, in SQL (top) and SPARQL (bottom). 
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ease with which ontologies can be enriched and connected to 

other resources in the semantic web. 
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STOPP B1: Stop digoxin for heart failure with normal systolic ventricular function (no clear evidence of benefit). 

 
SELECT ?patient ?drug_era { # SPARQL query for rule STOPP B1 
    ?patient omop_cdm:has_drug_era ?drug_era . 
    ?drug_era omop_cdm:has_concept/a/rdfs:subClassOf* atc:C01AA05 . 
    ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf* 
snomed:84114007. 
} 
 
STOPP C2: Stop aspirin with a past history of peptic ulcer disease without concomitant PPI (proton pump inhibitor). 

 
SELECT ?patient ?drug_era1 { # SPARQL query for rule STOPP C2 
    ?patient omop_cdm:has_drug_era ?drug_era1 . 
    ?drug_era1 omop_cdm:has_concept/a ?aspirin . 
          { ?aspirin rdfs:subClassOf* atc:B01AC06 . } 
    UNION { ?aspirin rdfs:subClassOf* atc:A01AD05 . } 
    UNION { ?aspirin rdfs:subClassOf* atc:N01BA01 . } 
    ?patient omop_cdm:has_condition_era/omop_cdm:has_concept/a/rdfs:subClassOf*  
                                                                         snomed:13200003. 
    FILTER NOT EXISTS { 
        ?patient omop_cdm:has_drug_era ?drug_era2 . 
        ?drug_era2 omop_cdm:has_concept/a/rdfs:subClassOf* atc:A02BC . # PPI 
        ?drug_era1 omop_cdm:start_date ?start1 . 
        ?drug_era1 omop_cdm:end_date ?end1 . 
        ?drug_era2 omop_cdm:start_date ?start2 . 
        ?drug_era2 omop_cdm:end_date ?end2 . 
        FILTER(?start1 < ?end2 && ?start2 < ?end1) . 
    } 
} 

Figure 5– Two rules extracted from the STOPP/START clinical guideline, and their translation into SPARQL. 

L. Jean-Baptiste et al. / Translating the Observational Medical Outcomes Partnership80


