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Abstract. The rapid development of elderly population is changing demographics
in Europe and North America and imposes barriers to healthcare systems that may
reduce the quality of service. Telemedicine is a potential solution supporting the
real-time and remote monitoring of subjects as well as bidirectional communication
with medical personnel for care delivery at the point of perception. Smart homes are
private spaces where young or elderly, healthy or diseased-suffering, or disabled
individuals spend the majority of their time. Hence, turning smart homes into
diagnostic spaces for continuous, real-time, and unobtrusive health monitoring
allows disease prediction and prevention before the subject perceives any
symptoms. According to the World Health Organization, health, well-being, and
quality of life assessment require the monitoring of interwoven domains such as
environmental, behavioral, physiological, and psychological. In this work, we give
an overview on sensing devices and technologies utilized in smart homes, which can
turn the home into a diagnostic space. We consider the integration of sensing devices
from all four WHO domains with respect to raw and processed data, transmission,
and synchronization. We apply the bus-based scalable intelligent system to construct
a hybrid topology for hierarchical multi-layer data fusion. This enables event
detection and alerting for short-time as well as prediction and prevention for long-
time monitoring.

Keywords. smart home, health monitoring, unobtrusive monitoring, Internet of
medical things, quality of life, International Standard Accident Number

1. Introduction
1.1 Aging Population

The life expectancy in many countries has increased due to several dominant reasons
including (i) improved healthcare systems, medical science, and diagnostic technology;
(i1) increased individual awareness on personal and environmental hygiene, health,
nutrition, and education [1-3]. Demographically, this yields an increasing average age
of populations. By 2035, one third of the population in Europe and North America will
be older than 65 years [4]. Such a rapid growth of elderly will adversely impact the
healthcare systems by increasing the human resources, imposing additional costs, and
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consequently reducing the quality of services [5, 6]. Furthermore, an increased life
expectancy is connected with demands of the elderly for independence and higher quality
of life (QoL) [7]. Hence, in order to adapt to these developing requirements in elderly
healthcare services, it is fundamental to create low-cost, unobtrusive, and simple-to-
utilize healthcare solutions [8]. Remote health monitoring allows medical personnel to
keep track of environmental, behavioral, physiological, and psychological signs. Such
an ambient assisted living (AAL) environment enables elderly to live longer
autonomously but safely in their homes, maintaining privacy and independence [9].
Thereby, smart homes can advance autonomy, the feeling of prosperity, and empower
the inhabitants to gain personal satisfaction [10].

1.2. Healthcare Systems

In our current healthcare systems, a subject meets a doctor when feeling sick, observing
symptoms, or for regular check-ups. This yields treatment after diagnosis: medical
professionals are mainly involved in the healthcare process by detecting symptoms,
diagnosing, and curing after the outbreak of a disease. Their decisions are based on
several physiological examinations (e.g., blood and urine tests, blood pressure, body
temperature, and heart rate measurements). However, future visions emphasize the
importance of prevention and prediction [11]. Next to regular check-ups of risk groups,
this can be accomplished by telemedicine, mobile health (mHealth), electronic health
(eHealth), and the Internet of medical things (IoMT) [12—14]. These trends aim at
managing and integrating large volumes of heterogeneous (big) data, which is generated
by sensing devices and stored in electronic health records (EHR). The automated fusion
of data from multiple sensing devices minimizes uncertainty and improves the detection
of trends in the individual’s health status as well as adverse health events. Modern
healthcare systems implement data analytics to find patterns and trends within the data,
to detect abnormalities or symptoms at an early stage, and to provide decision making
[15].

1.3. The Influencing Domains of Monitoring

The World Health Organization (WHO) refers to six domains on health, well-being, and
QoL [16], four of them are measurable technically:

e FEnvironmental parameters include hazardous or toxic gases that affect the
indoor/outdoor air quality and physical parameters such as sound level,
ultraviolet (UV) light index, temperature, or humidity [17];

®  Behavioral parameters include physical activity of a subject (e.g. walking, body
posture changes), gait parameters, activity of daily routine (ADL), habits, and
nutrition [18];

® Physiological parameters include the vital signs (e.g., body temperature, heart
rate, respiratory rate, blood pressure, and oxygen saturation) and non-vital signs
(e.g., skin conductance) [19];

® Psychological parameters include the mood and emotions of an individual [20].

(Remote) sensing in these four domains requires appropriate technologies to measure the
respective parameters. Furthermore, continuous and unobtrusive monitoring yields big
data. Since the WHO domains are interwoven, fused data analytics and pattern
recognition may significantly contribute to real-time event detection in the short-term,
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as well as prediction and prevention of adverse health events in the long-term, in
particular, for vulnerable groups of the population (e.g., children, elderly) [21, 22].

1.4. Smart Homes

Prolonged life expectancy and reduced birth rates yield a fast-growing rate of the elderly.
Furthermore, an increased anticipation of QoL aspects is observed that can be met by
new healthcare systems [23, 24], supporting elderly to continue living in their own homes,
as long as possible. In this new paradigm, the focus shifts from physician-centric to
patient-centric healthcare systems, where AAL technologies will revolutionize the
delivery of healthcare [25]. In this context, we define the term “smart home” as a
residence equipped with sensors and actuators that are integrated into a platform, leading
to the capability of monitoring the residents, improving QoL, and promoting independent
living [26-29]. More specifically, the benefits of smart homes include monitoring the
health status, detecting changes in health conditions, and predicting emergency events
(e.g., fall). Hence, smart homes may help to reduce the costs of healthcare systems.

In summary, we identify three major reasons for health monitoring in smart homes:

® Medical: detect health conditions and changes that else might have stayed
unnoticed;

®  Personal: allow elderly to continue living at home and having their privacy and
independence [26];

®  FEconomical: save costs in comparison with living in a nursing home or hospital
[30].

1.5 Transforming Smart Homes into Diagnostic Spaces

We consider the smart home as a private space that can be transformed into a diagnostic
space [21]. A diagnostic space should enable simultaneous monitoring of parameters
from all the four WHO domains. This concept is inline with the paradigms of shifting
the: (i) subject-to-device in a hospital — device-to-subject in a point of perception; and
(i1) diagnosis on symptoms — preventive medicine. This supports the idea of "an
accurate forecast for a specific individual longest before the predicted event" [21]. Such
an approach provides unobtrusive, continuous, and long-term data acquisition for real-
time monitoring. Integrating inexpensive medical and non-medical sensing devices in
smart homes copes with the requirements. Combining signal and bio-signal processing
and reducing the hardware complexity by analytical software via artificial intelligence
(Al)-based techniques may contribute to a valid diagnosis. The smart home as a
diagnostic space potentially solves problems related to smart wearables and clothes, such
as obtrusiveness and lack of power supply.

1.6. Target Groups

Several people benefit from transforming smart homes into diagnostic spaces:

®  [nhabitants:
©  Healthy individuals who are unable to seek help in case of an
emergency (e.g., fall, stroke, myocardial infarction) due to falling
unconsciousness or living in communities with inadequate provision
of health services (e.g., rural areas);
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o  Elderly who suffer from physical impairment such as lowered auditive,
visual, or muscular power and/or cognitive derogation (e.g.,
Alzheimer’s disease, dementia);

o Disabled people who need help in daily life to perform personal care
(e.g., eating, toileting, getting dressed, bathing) and instrumental
activities (e.g., cooking meals, taking medication, doing laundry).

o Patients who suffer from chronic diseases and who need continuous
monitoring [26].

e Caregivers including family, friends, and relatives of the inhabitants; and

®  Healthcare professionals giving care either locally (e.g., nursing service, meal
on wheels) or remotely by telemedicine systems [31].

1.7. Motivation

The IoMT paradigm has facilitated the interconnection of diverse devices and electronic
sensors in an embedded way. Utilizing IoMT in a smart home enables the collection of
heterogeneous data from a broad range of sensors. The chain of data aggregation begins
with the perception of data via a sensor network tier, which is then reported to a
personalized gateway and transmitted to an application tier (i.e., cloud/server) [32]. This
architecture enables the communication between various sensing layers and yields
telemedical diagnostics and care delivery at the point of perception [33]. Adequate
decision making is supported by:

o  Complete integration of parameters from all measurable WHO domains enables
reliable detection of sudden events, such as accidents and emergencies, as well
as long-term tendencies of particular diseases.

e  Continuous monitoring of the health status of a subject requires real-time data
analytics for timely alerts.

In summary, transforming a smart home into a diagnostic space (point of perception)
requires medical and non-medical sensing devices, which must be integrated for
simultaneous monitoring in all four domains. Due to limitations in infrastructure and
adequate data processing, this has not yet been accomplished.

We structure this work as follows: in Section 2, we overview the sensor technologies
and data management. Building upon that, in Section 3, we summarize typical smart
home applications and current research projects making use of them. In Section 4, we
show the limitations of current work and use a bus-based scalable intelligent system
(BASIS) to enable the measurement of all four WHO domains and thus, we unfold the
potential of smart homes as diagnostic spaces.

2.  Methods
2.1 Technologies in Smart Home

As seen from its definition, the technologies involved in the smart home can be very
broad. Smart home solutions utilize a wide range of technologies serving different goals.
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Sensor technology and signal processing play the key role in (environmental, behavioral,
physiological, and psychological) data collection; machine learning is essential in
information extraction and knowledge discovery; and to implement proper automatic
response functions, human-machine interaction (HMI) as well as automation control
technology are also unavoidable. Therefore, we also classify the technology from the
monitoring perspective according to the four WHO domains: environmental, behavioral,
physiological, and psychological. In this section, we introduce the typically used
devices/sensors for each category.

2.1.1.  Environmental Monitoring

Air quality sensors: Measuring pollutants indicates the quality of air. Pollutants include
toxic and hazardous gases such as carbon monoxide (CO), carbon dioxide (CO>), nitric
oxide (NO), volatile organic compounds (VOCs), particulate matter (PM;o and PM; ),
and ozone (Os3) [34]. Pollutants cause serious health risks depending on their
concentration, the subject’s health status, and the length of exposure [35, 36]. Nowadays,
small devices of convenient forms with low power consumption support continuous and
unobtrusive monitoring in particular for elderly, children, and people who are suffering
from cardiovascular and respiratory diseases. This has pushed air sensors to become an
inherent part of in-home monitoring. Based on the target applications, several factors are
considered: selectivity, reliability, resolution, response time, reproducibility, price, etc.
[37]. Common technologies utilize metal oxide semiconductors (MOS), electrochemical
detection (EC), photoionization (PID), and infrared (IR) [38]. Due to its lower power
consumption and price, but higher reliability and easier calibration, EC technology is
used mostly. EC sensors have a minimum of two sensing and counter electrodes, which
are contacted internally by electrolytes (i.e., liquid as an ion conductor) and externally
via an electronic circuit. The electrodes affect certain chemical reactions at the so-called
3-phase boundary, where gas, catalyst, and electrolyte are present. Furthermore, EC
sensors provide enhanced signal quality and have a longer lifetime [39].

Humidity and temperature sensors: Used in climate and weather evaluation, humidity
indicates the likelihood of precipitation, dew, or moisture. An individual feels hotter
under higher humidity, as it reduces the effectiveness of sweating to cool the body [40].
Furthermore, indoor humidity impacts temperature, air quality, health, and appliances
[41]. Advanced semiconductor technology has reduced the dimensions and weights of
sensors. Frequently, humidity and temperature sensors are combined. Thermal
conductivity, resistance, or capacity are typical electrical effects used in these sensors
[42]. Linear output voltage, stable output over long-term usage, and a wide range of
measurements made capacitive technologies popular. The major sensor components are
two curve shape electrodes made of aluminum, platinum, or chromium containing a
porous dielectric substance (e.g., hygroscopic polymer film). The dielectric constant
varies when humidity changes [43].

2.1.2.  Behavioral Monitoring

Passive infrared (PIR) motion sensors: PIR sensors have a low power consumption and
price. They detect objects through a changed light intensity [44]. Since the human body
generates more infrared light than the indoor environment, this sensor is suitable to
monitor human motion. The sensing component consists of a lens and a set of sensors
with two slots. The slot is made from pyroelectric materials that are sensitive to infrared
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light. When the sensor is idle, both slots detect the same intensity, i.e., ambient radiation
from the room or the walls. If a person passes by, the first slot generates a pulse. If the
person leaves the sensing area, a negative differential is generated (Fig. 1). To monitor
indoor behavior, PIR devices are attached to the living room, bedroom, kitchen, and
specific facilities such as toilets or sinks (Fig. 2).
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Figure 1. PIR sensing principle [43].
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Figure 2. PIR placement in a smart home [46]. The green boxes show the positions of PIR sensors and
the blue shadows are the areas under monitoring; the yellow boxes show the positions of contact sensors; red
boxes show the position of vibration sensors. Areas and objects distributions in the smart hom; (a) hall: (1)
drawer, (2) cloth hanger; (b) kitchen: (3) drawer, (4) dining seat, (5) dining table, (c) living room: (7) TV
table, (8) rotating library, (9) sofa, (10) coffee table; (d) bedroom: (11) night light, (12) bed, (13) bedside
table, (14) wardrobe; (e) toilet: (15) wash sink, (16) toilet, (17) tube, (f) working room: (18) drawer, (19)
desk, (20) chair, (21) drawer.
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Contact sensors: Humans open or close doors and windows, and simple contact sensors
can track such behavior. The reed switch sensor consists of a contact pair in a glass
hermetic shell (Fig. 3). One end of the contacts is fixed, while the other is covered with
electro-conductive material and can move freely under the effect of a magnetic field [45].
Once a magnetic field is applied to the switch, the free end moves towards the fixed end.
The switch is turned on, which yields a binary signal. Beside doors and windows, contact
sensors also monitor the use of furniture or appliances such as cabinets and fridges.

N
T

Door Fridge

(a) (b)

Figure 3. Reed switch. (a) construction: 1 — contact elements (springs) from permalloy; 2 — glass
hermetic shell; 3 — working gap. Once there is a magnetic field applied on the switch, the working gap
disappears and current passes. (b) application

Smart floors: Passive monitoring of behavior can be implemented resistively,
capacitively, piezoelectrically, and triboelectrically [46]. Data includes location of the
inhabitant, gait parameters (e.g., walking speed), and posture (e.g., fall). However, smart
floors are costly. Specific locations include the bedroom, bathroom, and kitchen, where
accidents occur frequently. Then, an alert is generated. Smart floors also create
behavioral patterns for long-term monitoring.

2.1.3.  Physiological monitoring

Electrocardiography (ECG): ECQG is usually measured with wet or dry electrodes, which
are in direct contact to the skin. In contrast, capacitive electrodes use the human body as
one pole of the capacitor, and clothes or a gap between the skin as the other [47]. Sitting
on a chair or lying in a bed with integrated cECG supports continuous monitoring of vital
signs. In a cECG chair, the sensing and reference electrodes are attached to the backrest
and the seating pad, respectively. In a cECG bed, all electrodes are layered beneath the
bed sheet (Fig. 4). Using cECG, we can record the ECG unobtrusively and obtain
significant health parameters such as the heart rate (HR) and the heart rate variability
(HRV) [48, 49].
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(@) (b)

Figure 4. (a ) cECG smart armchair and (b) smart bed. Capacitive electrodes are on the backside of the smart
armchair and beneath the smart bed.

Ballistocardiography (BCG): Due to the physical law of conservation of momentum, the
cardiac ejection of blood results in small velocity of the whole human body. BCG is a
non-invasive method to measure such body motion in three dimensions (3D) [50].
However, most devices focus on the longitudinal, i.e., head-to-toe component, as it
delivers heart rate and respiratory rate. Piezoelectric sensors and accelerometers are
usually adopted to acquire a BCG signal. In smart beds, they are attached to the frame
[51] or under the mattress [52].

2.1.4.  Psychological monitoring

Psychological monitoring is realized indirectly using the approaches of the
aforementioned domains. Physiological parameters can evidently reflect psychological
performance. For example, the heart rate, galvanic skin response (GSR), and
electroencephalography (EEG) are frequently used for psychological measurements.
Also, behavioral changes indicate psychological health [53] (Fig. 5).

Some devices particularly support psychological monitoring. For instance,
nighttime wandering monitoring systems (NWAS) support patients suffering from
dementia. Nighttime wandering potentially endangers patients in terms of injury (e.g.,
fall), unattended home exits, and negatively impairs the caregivers' sleep [54]. The
sensing delivers bed occupancy, inhabitant location, and use of objects. Fusing
behavioral and physiological data yields context understanding and allows actions to
calm down the patient, guide him/her back to the bed, and send an alarm to caregivers if
the home is left [55].

2.1.5.  Using Cameras in Emergency and for Physiological Measurement

According to the Department of Health and Human Services, approximately 28—-35% of
people aged 65 and over fall each year; and this figure increases to 32—42% for those
over 70 years of age [56]. This requires robust approaches for automated event detection
and timely delivery of first aid, and depth as well as video cameras use machine learning
for fall detection [57-59]. Taufeeque et al. applied long short-term memory (LSTM)
networks for human pose estimation and support multi-camera systems as well as multi-
person scenes. Their results yielded an F1 score of 92.5%. [60].
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Figure 5. Four subjects’ sensor data visualized by means of a spiral plot. The different colored dots
represent single sensor events [53].

Furthermore, cameras can measure physiological parameters and vital signs
indirectly. This includes heart rate and heart rate variability, SpO2, and others [61-63].
Such systems are applied in several environments, for instance smart cars ([64, 65]) and
neonatal intensive care units [64, 65].

2.2. Data Integration and Management

A healthcare telemedicine system is a hierarchical multi-layer model for care and aid
delivery [66]. The layers include (i) a network of sensors and sensing devices for
measurement and monitoring, (ii) a gateway for aggregating the sensors' data, and (iii) a
local server for fusion, processing, visualization, and interfacing the point of perception
to external healthcare systems. The sensor network has two layers. The first layer aims
at measurement, collection, and transmission. The second layer is an application for the
first tier of local processing, fusion, and analysis. The decision-makers require data
analysis. This is the consequence of complete monitoring, acquisition of extensive data
from distributed sensing devices, and data processing under the umbrella of data fusion.
The aim is instant event detection (e.g., fall) or long-term monitoring for predicting and
preventing abnormalities [67]. In the following, we describe the components and the
function of layers.
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2.2.1.  Senmsor integration

A sensor is an edge-integrated node in the network. It measures physiological or non-
physiological parameters and connects to an embedded system. It is not capable of data
processing and transmission. A sensor neither has computational resources nor memory
storage [68]. It differs from a sensing device in terms of memory, computational unit,
operation, and processing [69, 70].

2.2.2.  Sensing device integration

A sensing device is an embedded system connected to one or multiple sensors (on-board
or add-on integration). The sensing device is an intelligent edge device to collect and
pre-process data. Its functionality depends on the topology of the network. A sensing
device may have restricted computational resources and memory storage. It is the first
networking layer in a hierarchical data model.

An embedded system is a microprocessor-based computer hard- and software
system that performs a dedicated function, either independently or as a part of a larger
system architecture. Its core is an integrated circuit for real-time operations [71].

2.2.3.  Data management

Measuring various parameters, sensing devices deliver an enormous amount of data (big
data). We describe the data management in four stages:

1. Data acquisition and processing: Topology of the network, correlation of parameters,
and applications address multi-level data acquisition and processing, as [72]:

e Low-level: On the lowest level, a single embedded system connects to several
sensors related to one application for data processing. Synchronizing sensing
devices, rate of sampling and transmission, the capability of processing and the
topology are critical technical factors.

e Middle-level: The mid-level combines the processed data of several sensing
devices from the previous stage. It implements pattern matching.

e High-level: The highest level links the point of perception (i.e., diagnostic space:
smart home) to the external healthcare systems. It performs complex temporal-
spatial fusion and bottom-top (sensor — gateway — server) data flow for long-
term monitoring and early-stage detection (diagnosis — prediction —
prevention) (Fig. 6). The external server as the third layer is optional and
deployed according to the requirements at the point of perception.

2. Data transmission: In a hierarchical multi-layer model, we differentiate data
transmission in the inter- and intra-connected network layers. T The intercommunication
of sensing devices is hybrid: short-range wireless data transmission (e.g., Bluetooth,
Bluetooth Low Energy (BLE), Zigbee) and bulky data transmission with security shield
and compression over the long-range (3G/ 4G/ 5G cellular networks, Wi-Fi) [73].

3. Data synchronization: The hybrid topology improves network flexibility and sensor
integrity but increases the complexity in terms of data management. Event detection and
any change to the parameters are subject to data correlation among all WHO
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Figure 6. Multi-level data acquisition and processing in smart homes. The abbreviations stand for S: sensor,
ES: embedded system, SD: sensing device.

QoLdomains. Thus, every embedded system delivers every parameter with a respective
timestamp for synchronization [73].

4. Interfacing with healthcare systems: A complete chain of the healthcare system
includes point of perception (i.e., smart home: alerting system), rescue team (responding
system), and hospital (curing system). Therefore, a smart home as an alerting system
involves responding and curing systems upon the occurrence of an emergency through
opening the communication on the local server. The local server is also the bridge with
external healthcare system through establishing a bidirectional communication for (i)
delivering the emergency aid and rescue service; (ii) delivering care in real-time, and
observing the rehabilitation progress by medical personnel; (iii) creating a personalized
database by data collection from multi-sources (e.g., car, bike, and wearable) related to
the user.

3. Application

We distinguish the applications in disease prevention and automated health alerts in
smart homes into (i) health prognostics, (ii) emergency detection, and (iii) assistance and
response. We differentiate the applications from long to short-term monitoring.

3.1 Long-term Health Prognostics

In current healthcare systems, a subject consults a doctor for disease diagnosis after the
onset of the symptoms, and the level of discomfort is beyond a subjective threshold. This
is problematic as many diseases (e.g., cancer) deliver symptomes at a very late stage,
often too late for successful therapy and survival. Continuous measurement over the long
term offers early stage detection of subtle changes. Simultaneous measurement of
environmental, behavioral, physiological, and psychological parameters yields a high
prognostic value. Although the environmental domain has a high value for respiratory
diseases, this domain is typically not used for prognosis but for emergency detection. In
the following, we give examples of prognostic measures in physiological monitoring.
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We can assume the ECG as the modality with the highest prognostic value because
of a more-or-less direct cardiac activity measurement. Besides, many diseases influence
the cardiac system. Each cardiac cycle is represented by a pattern of waves (PQRST).
The R-R interval defines the duration between two cardiac cycles and the reciprocal
value is the HR. Other patterns allow insight into cardiac health. For instance, a
prolonged QT interval is a predictor for sudden cardiac death [74].

Photoplethysmography (PPQ) is an optical technique with lower diagnostic value
than the ECG but it is more unobtrusive. We can derive theHR and the peripheral oxygen
saturation (SpO2) from aPPG signal effortlessly. These parameters are used in
emergency settings such as intensive care. SpO2 also shows a prognostic value, e.g., for
predicting pulmonary fibrosis [75], respiratory failure [76], or arterial stiffness [77],
which is a powerful predictor of cardiovascular mortality [78].

BCG is of value for health prognosis [79] but has not received dissemination
comparable to ECG or PPG. This is because of the large number of confounding aspects.
The reasons are lack of standardization, the complex origin of the waveform, and a low
specificity and reliability for clinical applications [80]. Recently, developers integrated
this method into wearable sensors [81] and household items [51].

We have identified a few research projects with prognostics based on devices
sensing the behavioral domain. They focus on detecting unique events straightforwardly.
However, there are several aspects of health that result in a measurable subtle change in
behavior. Depression [82] and dementia [83] change gait, which is measurable by video
cameras, smart floors, or distance sensors. Although researchers have proposed camera-
based fall risk assessment [83] or disease detection [13], prognostic use of fused sensing
devices from multiple domains has not yet been reported.

Use case: We have equipped a 3-room apartment (bedroom, bathroom, living room) with
several sensing devices aiming at continuous monitoring for prognosis. We connect all
sensors via a universal sensor node to a bus and aggregate the data into a local data
warehouse. For physiological sensing, cECG sensors are integrated into the bed and chair
[14] and conventional ECG is embedded into a “smart mirror”. This allows ECG
monitoring in all rooms. We have installed video cameras with single-board computers.
If the camera detects a face, it estimates the heart rate from skin color changes [84]. For
behavioral sensing, we integrate three camera systems for pose recognition [16].
Furthermore, we embed contact sensors in each room, at doors and windows, showing
the status (open/close). Furthermore, IR sensors detect activities within a room. We also
use VoC, air humidity, temperatures, and luminosity sensors to measure the
environmental conditions. Hence, we have covered all four WHO domains.

3.2. Short-term Emergency Detection

In this section, we focus on emergencies, aiming at real-time detection and alerting.
Again, we consider all four domains. This type of event detection requires real-time
sensing and processing of sensor data.

Regarding environmental monitoring, there are many sensing devices available for
direct alarming gas, fire). Video cameras also can detect emergencies such as a fire [85].
In an emergency, high sensitivity and specificity are crucial. However, to date, there are
only commercial solutions for automatic alerting, which are usually installed in public
places such as hospitals, government buildings, or schools, but significantly less in
private homes.
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Regarding behavioral monitoring, there are several opportunities for emergency
detection. Video cameras monitor resident’s abnormal behavior, e.g., fall, heart attack
[86] or seizure [87]. Smart floors and PIR sensors are also capable of detecting abnormal
behavior in the elderly [88] or falls [89]. Secondary use of sensors in home automation,
such as monitoring the status changes of simple switches (e.g. light switches) detect
similar events [90]. However, there is not yet an alert based on this data. Physiological
signals, foremost ECG, shows many cardiac diseases such as elevation of the ST interval
[91], which indicated myocardial infarction (STEMI) Hyperkalemia [92], genetic
disorders [93], and toxic events [94]can also be seen in the ECG. PPG also has excellent
value for detecting emergencies [95]. It is used nowadays mostly in emergency
departments and in-home event detection [96], e.g., for overnight measurements [97].

Psychological monitoring is less established in smart homes [29]. In addition, we are not
aware of any commercial solution in the smart home for automatic alerting based on a
combination of environmental, behavioral, physiological, or psychological sensing
devices.

Use case: The International Standard Accident Number (ISAN) [98] aims to provide an
emergency communication platform [99, 100] realizing interconnectivity between a
smart home (alerting system), a responding system, and a curing system. We use
technological, semantical, and syntactical interconnection of these systems to share the
relevant emergency information. Our approach supports immediate emergency alerts
without any humans in the loop. The core of our approach is the ISAN token, which is
uniquely generated upon an event. It uniquely identifies an emergency and provides
embedded data describing the accident circumstances (time, location, unique identifier
of the alerting system, i.e., point of perception). A demonstrator has been implemented.
Once the smart home detects an event (e.g., fall, STEMI), it generates the ISAN number
automatically and sends it via the communication platform to the nearest responding and
curing systems.

3.3. Assistance and Response

We aim at reducing the time between the occurrence of an emergency and the delivery
of first aid. Automatic alerts shorten the time between the event and the call for assistance.
Such systems have been commercialized already using bracelets or necklaces with a
button that, once pressed, starts a voice connection (human to human) to an emergency
center [101]. A similar project is an e-call system embedded in all cars manufactured in
the EU [102]. Once the car inflates an airbag, the e-call system automatically establishes
a telephone call with the emergency service (human to human) and transmits a minimum
dataset (system to system). The systems can be triggered manually, too. Furthermore,
smartphone apps provide such panic buttons.

On the contrary, we have described the smart home as a diagnostic space that
automatically detects events and directly informs the responding system (system to
system) without any humans in the loop.

However, we can also shorten the response time after the call for assistance has been
received. Using the ISAN number, the smart home can provide floor maps and other
information that helps the rescue team to deliver the first aid faster. This includes not
only location but also navigation and additional health information such as ECG or heart
rate [100].
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In future applications, the smart home could also request for automatic assistance.
Robotics and drone technologies have already shown effectiveness in the delivery of first
aid kits [103, 104] and performing first aid, such as automatic cardiopulmonary
resuscitation [105].

4. Discussion

The WHO defines six domains influencing health, well-being, and QoL. Sensor
technology is capable of recording parameters from four of these domains: the
environmental, behavioral, physiological, and psychological domains. There are mutual
interactions among these domains.

4.1 Relationships Among the Four Domains

Environmental — Physiological/Behavioral/Psychological: The impact of air pollutants
on the risks of cardiovascular and respiratory diseases, lung cancer, and early death is
well identified and documented [106]. New research has emerged concerning the effect
of air pollution on the brain and mental illness (e.g., depression) [107]. The determinants
of psychological well-being have also been correlated with air pollution [108]. More
precisely, higher levels of air pollution let people spend less time outside, which worse
psychological distress by limited exposure to sunlight, reduced physical activity, and
increased social isolation [109, 110].

Behavioral — Physiological: Physical activity decreases the risk of several non-
communicable diseases, including obesity, cancer, type Il diabetes, hypertension,
chronic cardiovascular, and respiratory diseases [111]. However, despite a strong
commitment of WHO and the European Union in supporting health-enhancing behavior
regardless of gender, age, and social status, approximately 31% of adults and 80% of
young people (age: 13-15 years) worldwide are physically inactive and do not comply
with guidelines of healthy living [112, 113].

Psychological — Physiological: The psychological domain also influences physical
activity [114]. For example, psychological stress increases the HRV as well as the blood
pressure [115].

These examples show the intensive correlation and interaction of the four domains.
The environment as an external domain affects the other domains (subject-related
domains) but is itself not affected. Whether the aim of monitoring is long-term health
prognostics and short-term emergency detection and assistance, the processing and
decision-making is subject to data acquisition from multi sensing systems in multi
domains. Thus, simultaneous monitoring of parameters in several domains is important.

4.2. Incomplete Monitoring in Related Work

However, current research aims mainly at recording in one domain [116] and to enhance
the quality of data processing and analysis [22, 117]. Efficient acquisition of application-
specific data is essential for the design of healthcare services [118]. Lack of appropriate
data acquisition complies with incomplete monitoring of the domains [31].
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Some studies aimed at monitoring user behavioral changes in daily routine by using
sensors in home automation [119] [120]. Projects such as INCA [121] and Veterans
Health Administration [122] implemented the infrastructure fulfilling telemedical
requirements for disease management and care. FairforAge [123] and OASIS [124] are
focused on the aging society at home and in work environments supporting mobility and
life with cross-sectional topics on systems development. OASIS develops information
and communication technology (ICT) architectures for products and services in aging
societies. These leading projects cover three domains (environmental, behavioral,
physiological) by observing daily living (ODL).

4.3. Our Vision: Complete Monitoring

We have introduced a concept on measuring all four WHO domains within a home. In
our smart homes, we apply the bus system BASIS to connect all sensing devices. This
yields the time synchronization of all measured data in all the four domains. The four-
line bus has two lines for power supply and two lines for serial data transmission, and
small bus couplers are bridging the sensing devices with BASIS. We use ambient sensors
to extract behavioral patterns such as inactivity or motion. Our ambient sensors include
PIR, light switches, ultrasonic distance, door and window connectors, and power
consumption for the oven, fridge, and electrical outlets. We monitor the environmental
domain by sensors such as VoC, air humidity, air temperature, and luminosity light.

There are three major concerns about the direct integration of sensing devices from
the physiological and psychological domains: the devices (i) record the raw data at high
sampling rates (e.g., ECG with typically 1 kHz); (ii) require higher computational power;
(i) support wireless data transmission, which BASIS does not. During the research
phase, we add embedded systems (e.g., Raspberry Pi, NVIDIA Jetson) to the sensing
devices and transfer onset and offset via the BASIS bus for time synchronization, while
we transfer the raw data using Bluetooth, BLE, or Wi-Fi. In an application physe, the
raw data is processed directly in the embedded system and not stored at all. This hybrid
topology (wired/wireless) reduces latency and enables local and distributed on-board
data processing and multi-layer fusion to detect an emergency in any layer. Therefore,
we:

e process the simple tasks locally on the embedded systems, to reduce the network
latency and bandwidth,

e reduce the potential risk of security, by multi-layer data fusion and not push all
raw data to the external server,

This promotes the smart home concept to diagnostic spaces covering all four domains.
4.4. Future Trends in Healthcare System

Simultaneous monitoring of the four domains improves the semantic interoperability of
the smart home as a diagnostic space in precise and valid diagnostics before occurrence.
However, private spaces are also smart vehicles. Smart cars can be transformed into
diagnostic spaces as they have a controller area network (CAN) bus which is similar to
the BASIS in the smart homes [125]. Monitoring an individual in a smart diagnostic car
will add valuable information supporting unobtrusive, continuous, and simultaneous
measurements in all four domains while driving. Extending the continuous health
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monitoring to 24/7 specifies the role of wearable devices, e-bike, and smart offices (smart
city). This complies with the anything, anyone, anywhere, and anytime (A4) approach
[31]. In the near future, we expect more dynamic and mobile points of perception.
Seamless integration of the environments is challenging with respect to privacy and
security. However, we expect automated data fusion from multi-sources (e.g., smart
home, smart office, smart car, e-bike, and smart wearable) at distributed locations,
leading to a personalized database. This empowers valid diagnostics and decision-
making. Real-time monitoring and event detection is supported by linking the point of
perception to external healthcare systems. In particular, the responding and curing
systems are involved for real-time care and emergency services delivery at the point of
occurrence.

5. Conclusion

Integrating sensing devices that mutually measure parameters from the four WHO
domains of health, well-being, and QoL is essential for disease prevention and automatic
health alerts in smart homes and smart cars. We integrate medical and non-medical
sensing devices. Enriching the sensory layer network and developing hierarchical multi-
layer data fusion based on powerful computational nodes, supporting wired/wireless
communication, facilitates on-board and distributed data acquisition and processing.
This will reduce the traffic of raw data aggregation to high-level fusion. It also adds
invaluable processed information at a lower level and shortens the processing time for
information extraction out of the raw data. Bus-inherent synchronization supports data
fusion for long-term diagnostics and event detection. The young and the elderly, the
healthy and the disease-affected will benefit. In particular, we support the United Nations’
2030 Agenda for Sustainable Development [126], where the sustainable development
goal (SDGQG) 3 is to ensure healthy lives and to promote well-being for all people of all
ages as well as the WHO 13th General Programme of Work [127], which has three
interconnected strategic priorities to ensure healthy lives and well-being for all: (i)
achieving universal health coverage, (ii) addressing health emergencies, and (iii)
promoting healthier populations.
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