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Abstract. The rapid development of elderly population is changing demographics 
in Europe and North America and imposes barriers to healthcare systems that may 
reduce the quality of service. Telemedicine is a potential solution supporting the 
real-time and remote monitoring of subjects as well as bidirectional communication 
with medical personnel for care delivery at the point of perception. Smart homes are 
private spaces where young or elderly, healthy or diseased-suffering, or disabled 
individuals spend the majority of their time. Hence, turning smart homes into 
diagnostic spaces for continuous, real-time, and unobtrusive health monitoring 
allows disease prediction and prevention before the subject perceives any 
symptoms. According to the World Health Organization, health, well-being, and 
quality of life assessment require the monitoring of interwoven domains such as 
environmental, behavioral, physiological, and psychological. In this work, we give 
an overview on sensing devices and technologies utilized in smart homes, which can 
turn the home into a diagnostic space. We consider the integration of sensing devices 
from all four WHO domains with respect to raw and processed data, transmission, 
and synchronization. We apply the bus-based scalable intelligent system to construct 
a hybrid topology for hierarchical multi-layer data fusion. This enables event 
detection and alerting for short-time as well as prediction and prevention for long-
time monitoring. 
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1. Introduction 

1.1. Aging Population 

The life expectancy in many countries has increased due to several dominant reasons 

including (i) improved healthcare systems, medical science, and diagnostic technology; 

(ii) increased individual awareness on personal and environmental hygiene, health, 

nutrition, and education [1–3]. Demographically, this yields an increasing average age 

of populations. By 2035, one third of the population in Europe and North America will 

be older than 65 years [4]. Such a rapid growth of elderly will adversely impact the 

healthcare systems by increasing the human resources, imposing additional costs, and 
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consequently reducing the quality of services [5, 6]. Furthermore, an increased life 

expectancy is connected with demands of the elderly for independence and higher quality 

of life (QoL) [7]. Hence, in order to adapt to these developing requirements in elderly 

healthcare services, it is fundamental to create low-cost, unobtrusive, and simple-to-

utilize healthcare solutions [8]. Remote health monitoring allows medical personnel to 

keep track of environmental, behavioral, physiological, and psychological signs. Such 

an ambient assisted living (AAL) environment enables elderly to live longer 

autonomously but safely in their homes, maintaining privacy and independence [9]. 

Thereby, smart homes can advance autonomy, the feeling of prosperity, and empower 

the inhabitants to gain personal satisfaction [10].  

1.2. Healthcare Systems 

In our current healthcare systems, a subject meets a doctor when feeling sick, observing 

symptoms, or for regular check-ups. This yields treatment after diagnosis: medical 

professionals are mainly involved in the healthcare process by detecting symptoms, 

diagnosing, and curing after the outbreak of a disease. Their decisions are based on 

several physiological examinations (e.g., blood and urine tests, blood pressure, body 

temperature, and heart rate measurements). However, future visions emphasize the 

importance of prevention and prediction [11]. Next to regular check-ups of risk groups, 

this can be accomplished by telemedicine, mobile health (mHealth), electronic health 

(eHealth), and the Internet of medical things (IoMT) [12–14]. These trends aim at 

managing and integrating large volumes of heterogeneous (big) data, which is generated 

by sensing devices and stored in electronic health records (EHR). The automated fusion 

of data from multiple sensing devices minimizes uncertainty and improves the detection 

of trends in the individual’s health status as well as adverse health events. Modern 

healthcare systems implement data analytics to find patterns and trends within the data, 

to detect abnormalities or symptoms at an early stage, and to provide decision making 

[15].  

1.3. The Influencing Domains of Monitoring 

The World Health Organization (WHO) refers to six domains on health, well-being, and 

QoL [16], four of them are measurable technically: 
 

● Environmental parameters include hazardous or toxic gases that affect the 

indoor/outdoor air quality and physical parameters such as sound level, 

ultraviolet (UV) light index, temperature, or humidity [17]; 

● Behavioral parameters include physical activity of a subject (e.g. walking, body 

posture changes), gait parameters, activity of daily routine (ADL), habits, and 

nutrition [18]; 

● Physiological parameters include the vital signs (e.g., body temperature, heart 

rate, respiratory rate, blood pressure, and oxygen saturation) and non-vital signs 

(e.g., skin conductance) [19]; 

● Psychological parameters include the mood and emotions of an individual [20]. 
 

(Remote) sensing in these four domains requires appropriate technologies to measure the 

respective parameters. Furthermore, continuous and unobtrusive monitoring yields big 

data. Since the WHO domains are interwoven, fused data analytics and pattern 

recognition may significantly contribute to real-time event detection in the short-term, 
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as well as prediction and prevention of adverse health events in the long-term, in 

particular, for vulnerable groups of the population (e.g., children, elderly) [21, 22].  

1.4. Smart Homes 

Prolonged life expectancy and reduced birth rates yield a fast-growing rate of the elderly. 

Furthermore, an increased anticipation of QoL aspects is observed that can be met by 

new healthcare systems [23, 24], supporting elderly to continue living in their own homes, 

as long as possible. In this new paradigm, the focus shifts from physician-centric to 

patient-centric healthcare systems, where AAL technologies will revolutionize the 

delivery of healthcare [25]. In this context, we define the term “smart home” as a 

residence equipped with sensors and actuators that are integrated into a platform, leading 

to the capability of monitoring the residents, improving QoL, and promoting independent 

living [26–29]. More specifically, the benefits of smart homes include monitoring the 

health status, detecting changes in health conditions, and predicting emergency events 

(e.g., fall). Hence, smart homes may help to reduce the costs of healthcare systems.  

In summary, we identify three major reasons for health monitoring in smart homes: 
 

● Medical: detect health conditions and changes that else might have stayed 

unnoticed; 

● Personal: allow elderly to continue living at home and having their privacy and 

independence [26];  

● Economical: save costs in comparison with living in a nursing home or hospital 

[30]. 

1.5. Transforming Smart Homes into Diagnostic Spaces 

We consider the smart home as a private space that can be transformed into a diagnostic 

space [21]. A diagnostic space should enable simultaneous monitoring of parameters 

from all the four WHO domains. This concept is inline with the paradigms of shifting 

the: (i) subject-to-device in a hospital → device-to-subject in a point of perception; and 

(ii) diagnosis on symptoms → preventive medicine. This supports the idea of "an 

accurate forecast for a specific individual longest before the predicted event" [21]. Such 

an approach provides  unobtrusive, continuous, and long-term data acquisition for  real-

time monitoring. Integrating inexpensive medical and non-medical sensing devices in 

smart homes copes with the requirements. Combining signal and bio-signal processing 

and reducing the hardware complexity by analytical software via artificial intelligence 

(AI)-based techniques may contribute to a valid diagnosis. The smart home as a 

diagnostic space potentially solves problems related to smart wearables and clothes, such 

as obtrusiveness and lack of power supply. 

1.6. Target Groups 

Several people benefit from transforming smart homes into diagnostic spaces: 
 

●  Inhabitants: 

○ Healthy individuals who are unable to seek help in case of an 

emergency (e.g., fall, stroke, myocardial infarction) due to falling 

unconsciousness or living in communities with inadequate provision 

of health services (e.g., rural areas);  

M. Haghi et al. / Integrated Sensing Devices for Disease Prevention and Health Alerts 41



○ Elderly who suffer from physical impairment such as lowered auditive, 

visual, or muscular power and/or cognitive derogation (e.g., 

Alzheimer’s disease, dementia); 

○ Disabled people who need help in daily life to perform personal care 

(e.g., eating, toileting, getting dressed, bathing) and instrumental 

activities (e.g., cooking meals, taking medication, doing laundry).  

○ Patients who suffer from chronic diseases and who need continuous 

monitoring [26]. 
 

● Caregivers including family, friends, and relatives of the inhabitants; and 
     

● Healthcare professionals giving care either locally (e.g., nursing service, meal 

on wheels) or remotely by telemedicine systems [31]. 

1.7. Motivation 

The IoMT paradigm has facilitated the interconnection of diverse devices and electronic 

sensors in an embedded way. Utilizing IoMT in a smart home enables the collection of 

heterogeneous data from a broad range of sensors. The chain of data aggregation begins 

with the perception of data via a sensor network tier, which is then reported to a 

personalized gateway and transmitted to an application tier (i.e., cloud/server) [32]. This 

architecture enables the communication between various sensing layers and yields 

telemedical diagnostics and care delivery at the point of perception [33]. Adequate 

decision making is supported by: 
 

● Complete integration of parameters from all measurable WHO domains enables 

reliable detection of sudden events, such as accidents and emergencies, as well 

as long-term tendencies of particular diseases.  

● Continuous monitoring of the health status of a subject requires real-time data 

analytics for timely alerts.  
 

In summary, transforming a smart home into a diagnostic space (point of perception) 

requires medical and non-medical sensing devices, which must be integrated for 

simultaneous monitoring in all four domains. Due to limitations in infrastructure and 

adequate data processing, this has not yet been accomplished.  

We structure this work as follows: in Section 2, we overview the sensor technologies 

and data management. Building upon that, in Section 3, we summarize typical smart 

home applications and current research projects making use of them. In Section 4, we 

show the limitations of current work and use a bus-based scalable intelligent system 

(BASIS) to enable the measurement of all four WHO domains and thus, we unfold the 

potential of smart homes as diagnostic spaces. 

2. Methods 

2.1. Technologies in Smart Home 

As seen from its definition, the technologies involved in the smart home can be very 

broad. Smart home solutions utilize a wide range of technologies serving different goals. 
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Sensor technology and signal processing play the key role in (environmental, behavioral, 

physiological, and psychological) data collection; machine learning is essential in 

information extraction and knowledge discovery; and to implement proper automatic 

response functions, human-machine interaction (HMI) as well as automation control 

technology are also unavoidable. Therefore, we also classify the technology from the 

monitoring perspective according to the four WHO domains: environmental, behavioral, 

physiological, and psychological. In this section, we introduce the typically used 

devices/sensors for each category. 

2.1.1. Environmental Monitoring 

Air quality sensors: Measuring pollutants indicates the quality of air. Pollutants include 

toxic and hazardous gases such as carbon monoxide (CO), carbon dioxide (CO2), nitric 

oxide (NO), volatile organic compounds (VOCs), particulate matter (PM10 and PM2.5), 

and ozone (O3) [34]. Pollutants cause serious health risks depending on their 

concentration, the subject’s health status, and the length of exposure [35, 36]. Nowadays, 

small devices of convenient forms with low power consumption support continuous and 

unobtrusive monitoring in particular for elderly, children, and people who are suffering 

from cardiovascular and respiratory diseases. This has pushed air sensors to become an 

inherent part of in-home monitoring. Based on the target applications, several factors are 

considered: selectivity, reliability, resolution, response time, reproducibility, price, etc. 

[37]. Common technologies utilize metal oxide semiconductors (MOS), electrochemical 

detection (EC), photoionization (PID), and infrared (IR) [38]. Due to its lower power 

consumption and price, but higher reliability and easier calibration, EC technology is 

used mostly. EC sensors have a minimum of two sensing and counter electrodes, which 

are contacted internally by electrolytes (i.e., liquid as an ion conductor) and externally 

via an electronic circuit. The electrodes affect certain chemical reactions at the so-called 

3-phase boundary, where gas, catalyst, and electrolyte are present. Furthermore, EC 

sensors provide enhanced signal quality and have a longer lifetime [39].  

 

Humidity and temperature sensors: Used in climate and weather evaluation, humidity 

indicates the likelihood of precipitation, dew, or moisture. An individual feels hotter 

under higher humidity, as it reduces the effectiveness of sweating to cool the body [40]. 

Furthermore, indoor humidity impacts temperature, air quality, health, and appliances 

[41]. Advanced semiconductor technology has reduced the dimensions and weights of 

sensors. Frequently, humidity and temperature sensors are combined. Thermal 

conductivity, resistance, or capacity are typical electrical effects used in these sensors 

[42]. Linear output voltage, stable output over long-term usage, and a wide range of 

measurements made capacitive technologies popular. The major sensor components are 

two curve shape electrodes made of aluminum, platinum, or chromium containing a 

porous dielectric substance (e.g., hygroscopic polymer film). The dielectric constant 

varies when humidity changes [43]. 

2.1.2. Behavioral Monitoring 

Passive infrared (PIR) motion sensors: PIR sensors have a low power consumption and 

price. They detect objects through a changed light intensity [44]. Since the human body 

generates more infrared light than the indoor environment, this sensor is suitable to 

monitor human motion. The sensing component consists of a lens and a set of sensors 

with two slots. The slot is made from pyroelectric materials that are sensitive to infrared 
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light. When the sensor is idle, both slots detect the same intensity, i.e., ambient radiation 

from the room or the walls. If a person passes by, the first slot generates a pulse. If the 

person leaves the sensing area, a negative differential is generated (Fig. 1). To monitor 

indoor behavior, PIR devices are attached to the living room, bedroom, kitchen, and 

specific facilities such as toilets or sinks (Fig. 2).  

 

 

Figure 1. PIR sensing principle [43]. 

 

 

Figure 2. PIR placement in a smart home [46]. The green boxes show the positions of PIR sensors and 

the blue shadows are the areas under monitoring; the yellow boxes show the positions of contact sensors; red 

boxes show the position of vibration sensors. Areas and objects distributions in the smart hom; (a) hall: (1) 

drawer, (2) cloth hanger; (b) kitchen: (3) drawer, (4) dining seat, (5) dining table, (c) living room: (7) TV 

table, (8) rotating library, (9) sofa, (10) coffee table; (d) bedroom: (11) night light, (12) bed, (13) bedside 

table, (14) wardrobe; (e) toilet: (15) wash sink, (16) toilet, (17) tube, (f) working room: (18) drawer, (19) 

desk, (20) chair, (21) drawer. 
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Contact sensors: Humans open or close doors and windows, and simple contact sensors 

can track such behavior. The reed switch sensor consists of a contact pair in a glass 

hermetic shell (Fig. 3). One end of the contacts is fixed, while the other is covered with 

electro-conductive material and can move freely under the effect of a magnetic field [45]. 

Once a magnetic field is applied to the switch, the free end moves towards the fixed end. 

The switch is turned on, which yields a binary signal. Beside doors and windows, contact 

sensors also monitor the use of furniture or appliances such as cabinets and fridges. 
 

 

Figure 3. Reed switch. (a) construction: 1 – contact elements (springs) from permalloy; 2 – glass 

hermetic shell; 3 – working gap. Once there is a magnetic field applied on the switch, the working gap 

disappears and current passes. (b) application 

 

Smart floors: Passive monitoring of behavior can be implemented resistively, 

capacitively, piezoelectrically, and triboelectrically [46]. Data includes location of the 

inhabitant, gait parameters (e.g., walking speed), and posture (e.g., fall). However, smart 

floors are costly. Specific locations include the bedroom, bathroom, and kitchen, where 

accidents occur frequently. Then, an alert is generated. Smart floors also create 

behavioral patterns for long-term monitoring.  

2.1.3. Physiological monitoring 

Electrocardiography (ECG): ECG is usually measured with wet or dry electrodes, which 

are in direct contact to the skin. In contrast, capacitive electrodes use the human body as 

one pole of the capacitor, and clothes or a gap between the skin as the other [47]. Sitting 

on a chair or lying in a bed with integrated cECG supports continuous monitoring of vital 

signs. In a cECG chair, the sensing and reference electrodes are attached to the backrest 

and the seating pad, respectively. In a cECG bed, all electrodes are layered beneath the 

bed sheet (Fig. 4). Using cECG, we can record the ECG unobtrusively and obtain 

significant health parameters such as the heart rate (HR) and the heart rate variability 

(HRV) [48, 49]. 
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Figure 4. (a ) cECG smart armchair and (b) smart bed. Capacitive electrodes are on the backside of the smart 
armchair and beneath the smart bed.  

 

Ballistocardiography (BCG): Due to the physical law of conservation of momentum, the 

cardiac ejection of blood results in small velocity of the whole human body. BCG is a 

non-invasive method to measure such body motion in three dimensions (3D) [50]. 

However, most devices focus on the longitudinal, i.e., head-to-toe component, as it 

delivers heart rate and respiratory rate. Piezoelectric sensors and accelerometers are 

usually adopted to acquire a BCG signal. In smart beds, they are attached to the frame 

[51] or under the mattress [52]. 

2.1.4. Psychological monitoring 

Psychological monitoring is realized indirectly using the approaches of the 

aforementioned domains. Physiological parameters can evidently reflect psychological 

performance. For example, the heart rate, galvanic skin response (GSR), and 

electroencephalography (EEG) are frequently used for psychological measurements. 

Also, behavioral changes indicate psychological health [53] (Fig. 5). 

Some devices particularly support psychological monitoring. For instance, 

nighttime wandering monitoring systems (NWAS) support patients suffering from 

dementia. Nighttime wandering potentially endangers patients in terms of injury (e.g., 

fall), unattended home exits, and negatively impairs the caregivers' sleep [54]. The 

sensing delivers bed occupancy, inhabitant location, and use of objects. Fusing 

behavioral and physiological data yields context understanding and allows actions to 

calm down the patient, guide him/her back to the bed, and send an alarm to caregivers if 

the home is left [55].  

2.1.5. Using Cameras in Emergency and for Physiological Measurement 

According to the Department of Health and Human Services,  approximately 28–35% of 

people aged 65 and over fall each year; and this figure increases to 32–42% for those 

over 70 years of age [56]. This requires robust approaches for automated event detection 

and timely delivery of first aid, and depth as well as video cameras use machine learning 

for fall detection [57–59]. Taufeeque et al. applied long short-term memory (LSTM) 

networks for human pose estimation and support multi-camera systems as well as multi-

person scenes. Their results yielded an F1 score of 92.5%. [60]. 
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Figure 5. Four subjects’ sensor data visualized by means of a spiral plot. The different colored dots 

represent single sensor events [53]. 

 

Furthermore, cameras can measure physiological parameters and vital signs 

indirectly. This includes heart rate and heart rate variability, SpO2, and others  [61–63]. 

Such systems are applied in several environments, for instance smart cars ([64, 65]) and 

neonatal intensive care units [64, 65]. 

2.2. Data Integration and Management 

A healthcare telemedicine system is a hierarchical multi-layer model for care and aid 

delivery [66]. The layers include (i) a network of sensors and sensing devices for 

measurement and monitoring, (ii) a gateway for aggregating the sensors' data, and (iii) a 

local server for fusion, processing, visualization, and interfacing the point of perception 

to external healthcare systems. The sensor network has two layers. The first layer aims 

at measurement, collection, and transmission. The second layer is an application for the 

first tier of local processing, fusion, and analysis. The decision-makers require data 

analysis. This is the consequence of complete monitoring, acquisition of extensive data 

from distributed sensing devices, and data processing under the umbrella of data fusion. 

The aim is instant event detection (e.g., fall) or long-term monitoring for predicting and 

preventing abnormalities [67]. In the following, we describe the components and the 

function of layers. 
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2.2.1. Sensor integration 

A sensor is an edge-integrated node in the network. It measures physiological or non-

physiological parameters and connects to an embedded system. It is not capable of data 

processing and transmission. A sensor neither has computational resources nor memory 

storage [68]. It differs from a sensing device in terms of memory, computational unit, 

operation, and processing [69, 70]. 

2.2.2. Sensing device integration 

A sensing device is an embedded system connected to one or multiple sensors (on-board 

or add-on integration). The sensing device is an intelligent edge device to collect and 

pre-process data. Its functionality depends on the topology of the network. A sensing 

device may have restricted computational resources and memory storage. It is the first 

networking layer in a hierarchical data model.  

An embedded system is a microprocessor-based computer hard- and software 

system that performs a dedicated function, either independently or as a part of a larger 

system architecture. Its core is an integrated circuit for real-time operations [71]. 

2.2.3. Data management 

Measuring various parameters, sensing devices deliver an enormous amount of data (big 

data). We describe the data management in four stages:  
 
1. Data acquisition and processing: Topology of the network, correlation of parameters, 

and applications address multi-level data acquisition and processing, as  [72]: 
 

● Low-level: On the lowest level, a single embedded system connects to several 

sensors related to one application for data processing. Synchronizing sensing 

devices, rate of sampling and transmission, the capability of processing and the 

topology are critical technical factors.    

● Middle-level: The mid-level combines the processed data of several sensing 

devices from the previous stage. It implements pattern matching.  

● High-level: The highest level links the point of perception (i.e., diagnostic space: 

smart home) to the external healthcare systems. It performs complex temporal-

spatial fusion and bottom-top (sensor → gateway → server) data flow for long-

term monitoring and early-stage detection (diagnosis → prediction →  

prevention) (Fig. 6). The external server as the third layer is optional and 

deployed according to the requirements at the point of perception. 
 
2. Data transmission: In a hierarchical multi-layer model, we differentiate data 

transmission in the inter- and intra-connected network layers. T The intercommunication 

of sensing devices is hybrid: short-range wireless data transmission (e.g., Bluetooth, 

Bluetooth Low Energy (BLE), Zigbee) and bulky data transmission with security shield 

and compression over the long-range (3G/ 4G/ 5G cellular networks, Wi-Fi) [73]. 
     
3. Data synchronization: The hybrid topology improves network flexibility and sensor 

integrity but increases the complexity in terms of data management. Event detection and 

any change to the parameters are subject to data correlation among all WHO  
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Figure 6. Multi-level data acquisition and processing in smart homes. The abbreviations stand for S: sensor, 

ES: embedded system, SD: sensing device. 

 

QoLdomains. Thus, every embedded system delivers every parameter with a respective 

timestamp for synchronization [73]. 
     

4. Interfacing with healthcare systems: A complete chain of the healthcare system 

includes point of perception (i.e., smart home: alerting system), rescue team (responding 

system), and hospital (curing system). Therefore, a smart home as an alerting system 

involves responding and curing systems upon the occurrence of an emergency through 

opening the communication on the local server. The local server is also the bridge with 

external healthcare system through establishing a bidirectional communication for (i) 

delivering the emergency aid and rescue service; (ii) delivering care in real-time, and 

observing the rehabilitation progress by medical personnel; (iii) creating a personalized 

database by data collection from multi-sources (e.g., car, bike, and wearable) related to 

the user. 

3. Application 

We distinguish the applications in disease prevention and automated health alerts in 

smart homes into (i) health prognostics, (ii) emergency detection, and (iii) assistance and 

response. We differentiate the applications from long to short-term monitoring. 

3.1. Long-term Health Prognostics 

In current healthcare systems, a subject consults a doctor for disease diagnosis after the 

onset of the symptoms, and the level of discomfort is beyond a subjective threshold. This 

is problematic as many diseases (e.g., cancer) deliver symptomes at a very late stage, 

often too late for successful therapy and survival. Continuous measurement over the long 

term offers early stage detection of subtle changes. Simultaneous measurement of 

environmental, behavioral, physiological, and psychological parameters yields a high 

prognostic value. Although the environmental domain has a high value for respiratory 

diseases, this domain is typically not used for prognosis but for emergency detection. In 

the following, we give examples of prognostic measures in physiological monitoring.  
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We can assume the ECG as the modality with the highest prognostic value because 

of a more-or-less direct cardiac activity measurement. Besides, many diseases influence 

the cardiac system. Each cardiac cycle is represented by a pattern of waves (PQRST). 

The R-R interval defines the duration between two cardiac cycles and the reciprocal 

value is the HR.  Other patterns allow insight into cardiac health. For instance, a 

prolonged QT interval is a predictor for sudden cardiac death [74].  

Photoplethysmography (PPG) is an optical technique with lower diagnostic value 

than the ECG but it is more unobtrusive. We can derive theHR and the peripheral oxygen 

saturation (SpO2) from aPPG signal effortlessly. These parameters are used in 

emergency settings such as intensive care. SpO2 also shows a prognostic value, e.g., for 

predicting pulmonary fibrosis [75], respiratory failure [76], or arterial stiffness [77], 

which is a powerful predictor of cardiovascular mortality [78]. 

BCG  is of value for health prognosis [79] but has not received dissemination 

comparable to ECG or PPG. This is because of the large number of confounding aspects. 

The reasons are lack of standardization, the complex origin of the waveform, and a low 

specificity and reliability for clinical applications [80]. Recently, developers integrated 

this method into wearable sensors [81] and household items [51]. 

We have identified a few research projects with prognostics based on devices 

sensing the behavioral domain. They focus on detecting unique events straightforwardly. 

However, there are several aspects of health that result in a measurable subtle change in 

behavior. Depression [82] and dementia [83] change gait, which is measurable by video 

cameras, smart floors, or distance sensors. Although researchers have proposed camera-

based fall risk assessment [83] or disease detection [13], prognostic use of fused sensing 

devices from multiple domains has not yet been reported. 

 

Use case: We have equipped a 3-room apartment (bedroom, bathroom, living room) with 

several sensing devices aiming at continuous monitoring for prognosis. We connect all 

sensors via a universal sensor node to a bus and aggregate the data into a local data 

warehouse. For physiological sensing, cECG sensors are integrated into the bed and chair 

[14] and conventional ECG is embedded into a “smart mirror”. This allows ECG 

monitoring in all rooms. We have installed video cameras with single-board computers. 

If the camera detects a face, it estimates the heart rate from skin color changes [84]. For 

behavioral sensing, we integrate three camera systems for pose recognition [16]. 

Furthermore, we embed contact sensors in each room, at doors and windows, showing 

the status (open/close). Furthermore, IR sensors detect activities within a room. We also 

use VoC, air humidity, temperatures, and luminosity sensors to measure the 

environmental conditions. Hence, we have covered all four WHO domains.  

3.2. Short-term Emergency Detection 

In this section, we focus on emergencies, aiming at real-time detection and alerting. 

Again, we consider all four domains. This type of event detection requires real-time 

sensing and processing of sensor data. 

Regarding environmental monitoring, there are many sensing devices available for 

direct alarming gas, fire). Video cameras also can detect emergencies such as a fire [85]. 

In an emergency, high sensitivity and specificity are crucial. However, to date, there are 

only commercial solutions for automatic alerting, which are usually installed in public 

places such as hospitals, government buildings, or schools, but significantly less in 

private homes. 
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Regarding behavioral monitoring, there are several opportunities for emergency 

detection. Video cameras monitor resident’s abnormal behavior, e.g., fall, heart attack 

[86] or seizure [87]. Smart floors and PIR sensors are also capable of detecting abnormal 

behavior in the elderly [88] or falls [89]. Secondary use of sensors in home automation, 

such as monitoring the status changes of simple switches (e.g. light switches) detect 

similar events [90]. However, there is not yet an alert based on this data. Physiological 

signals, foremost ECG, shows many cardiac diseases such as elevation of the ST interval 

[91], which indicated myocardial infarction (STEMI) Hyperkalemia [92], genetic 

disorders [93], and  toxic events [94]can also be seen in the ECG. PPG also has excellent 

value for detecting emergencies [95]. It is used nowadays mostly in emergency 

departments and in-home event detection [96], e.g., for overnight measurements [97].  

 

Psychological monitoring is less established in smart homes [29]. In addition, we are not 

aware of any commercial solution in the smart home for automatic alerting based on a 

combination of environmental, behavioral, physiological, or psychological sensing 

devices.  

 

Use case: The International Standard Accident Number (ISAN) [98] aims to provide an 

emergency communication platform [99, 100] realizing interconnectivity between a 

smart home (alerting system), a responding system, and a curing system. We use 

technological, semantical, and syntactical interconnection of these systems to share the 

relevant emergency information. Our approach supports immediate emergency alerts 

without any humans in the loop. The core of our approach is the ISAN token, which is 

uniquely generated upon an event. It uniquely identifies an emergency and provides 

embedded data describing the accident circumstances (time, location, unique identifier 

of the alerting system, i.e., point of perception). A demonstrator has been implemented. 

Once the smart home detects an event (e.g., fall, STEMI), it generates the ISAN number 

automatically and sends it via the communication platform to the nearest responding and 

curing systems.  

3.3. Assistance and Response 

We aim at reducing the  time between the occurrence of an emergency and the delivery 

of first aid. Automatic alerts shorten the time between the event and the call for assistance. 

Such systems  have been commercialized already  using bracelets or necklaces with a 

button that, once pressed, starts a voice connection (human to human) to an emergency 

center [101]. A similar project is an e-call system embedded in all cars manufactured in 

the EU [102]. Once the car inflates an airbag, the e-call system automatically establishes 

a telephone call with the emergency service (human to human) and transmits a minimum 

dataset (system to system).  The systems can be triggered manually, too. Furthermore, 

smartphone apps provide such panic buttons. 

On the contrary, we have described the smart home as a diagnostic space that 

automatically detects events and directly informs the responding system (system to 

system) without any humans in the loop.  

However, we can also shorten the response time after the call for assistance has been 

received. Using the ISAN number, the smart home can provide floor maps and other 

information that helps the rescue team to deliver the first aid faster. This includes not 

only location but also navigation and additional health information such as ECG or heart 

rate [100]. 
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In future applications, the smart home could also request for automatic assistance. 

Robotics and drone technologies have already shown effectiveness in the delivery of first 

aid kits [103, 104] and performing first aid, such as automatic cardiopulmonary 

resuscitation [105]. 

4. Discussion 

The WHO defines six domains influencing health, well-being, and QoL. Sensor 

technology is capable of recording parameters from four of these domains: the 

environmental, behavioral, physiological, and psychological domains. There are mutual 

interactions among these domains. 

4.1.  Relationships Among the Four Domains 

Environmental → Physiological/Behavioral/Psychological: The impact of air pollutants 

on the risks of cardiovascular and respiratory diseases, lung cancer, and early death is 

well identified and documented [106]. New research has emerged concerning the effect 

of air pollution on the brain and mental illness (e.g., depression) [107]. The determinants 

of psychological well-being have also been correlated with air pollution [108]. More 

precisely, higher levels of air pollution let people spend less time outside, which worse 

psychological distress by limited exposure to sunlight, reduced physical activity, and 

increased social isolation [109, 110]. 

 

Behavioral → Physiological: Physical activity decreases the risk of several non-

communicable diseases, including obesity, cancer, type II diabetes, hypertension, 

chronic cardiovascular, and respiratory diseases [111]. However, despite a strong 

commitment of WHO and the European Union in supporting health-enhancing behavior 

regardless of gender, age, and social status, approximately 31% of adults and 80% of 

young people (age: 13-15 years) worldwide are physically inactive and do not comply 

with guidelines of healthy living [112, 113].  

 

Psychological → Physiological: The psychological domain also influences physical 

activity [114]. For example, psychological stress increases the HRV as well as the  blood 

pressure [115]. 

 

These examples show the intensive correlation and interaction of the four domains. 

The environment as an external domain affects the other domains (subject-related 

domains) but is itself not affected. Whether the aim of monitoring is long-term health 

prognostics and short-term emergency detection and assistance, the processing and 

decision-making is subject to data acquisition from multi sensing systems in multi 

domains. Thus, simultaneous monitoring of parameters in several domains is important.  

4.2. Incomplete Monitoring in Related Work 

However, current research aims mainly at recording in one domain [116] and to enhance 

the quality of data processing and analysis [22, 117]. Efficient acquisition of application-

specific data is essential for the  design of healthcare services [118]. Lack of appropriate  

data acquisition complies with incomplete monitoring of the domains [31]. 
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Some studies aimed at monitoring user behavioral changes in daily routine by using 

sensors in home automation [119] [120]. Projects such as INCA [121] and Veterans 

Health Administration [122] implemented the infrastructure fulfilling telemedical 

requirements for disease management and care. FairforAge [123] and OASIS [124] are 

focused on the aging society at home and in work environments supporting mobility and 

life with cross-sectional topics on systems development. OASIS develops information 

and communication technology (ICT) architectures for products and services in aging 

societies. These leading projects cover three domains (environmental, behavioral, 

physiological) by observing daily living (ODL). 

4.3. Our Vision: Complete Monitoring 

We have introduced a concept on measuring all four WHO domains within a home. In 

our smart homes, we apply the bus system BASIS to connect all sensing devices. This 

yields the time synchronization of all measured data in all the four domains. The four-

line bus has two lines for power supply and two lines for serial data transmission, and 

small bus couplers are bridging the sensing devices with BASIS. We use ambient sensors 

to extract behavioral patterns such as inactivity or motion. Our ambient sensors include 

PIR, light switches, ultrasonic distance, door and window connectors, and power 

consumption for the oven, fridge, and electrical outlets. We monitor the environmental 

domain by sensors such as VoC, air humidity, air temperature, and luminosity light. 

 There are three major concerns about the direct integration of sensing devices from 

the physiological and psychological domains: the devices (i) record the raw data at high 

sampling rates (e.g., ECG with typically 1 kHz); (ii) require higher computational power; 

(iii) support wireless data transmission, which BASIS does not. During the research 

phase, we add embedded systems (e.g., Raspberry Pi, NVIDIA Jetson) to the sensing 

devices and transfer onset and offset via the BASIS bus for time synchronization, while 

we transfer the raw data using Bluetooth, BLE, or Wi-Fi. In an application physe, the 

raw data is processed directly in the embedded system and not stored at all. This hybrid 

topology (wired/wireless) reduces latency and enables local and distributed on-board 

data processing and multi-layer fusion to detect an emergency in any layer. Therefore, 

we: 
 

● process the simple tasks locally on the embedded systems, to reduce the network 

latency and bandwidth, 

● reduce the potential risk of security, by multi-layer data fusion and not push all 

raw data to the external server, 
 
This promotes the smart home concept to diagnostic spaces covering all four domains.   

4.4. Future Trends in Healthcare System 

Simultaneous monitoring of the four domains improves the semantic interoperability of 

the smart home as a diagnostic space in precise and valid diagnostics before occurrence. 

However, private spaces are also smart vehicles. Smart cars can be transformed into 

diagnostic spaces as they have a controller area network (CAN) bus which is similar to 

the BASIS in  the smart homes [125].  Monitoring an individual in a smart diagnostic car 

will add valuable information supporting unobtrusive, continuous, and simultaneous 

measurements in all four domains while driving. Extending the continuous health 

M. Haghi et al. / Integrated Sensing Devices for Disease Prevention and Health Alerts 53



monitoring to 24/7 specifies the role of wearable devices, e-bike, and smart offices (smart 

city). This complies with the anything, anyone, anywhere, and anytime (A4) approach 

[31]. In the near future, we expect more dynamic and mobile points of perception. 

Seamless integration of the environments is challenging with respect to privacy and 

security. However, we expect automated data fusion from multi-sources (e.g., smart 

home, smart office, smart car, e-bike, and smart wearable) at distributed locations, 

leading to a personalized database. This empowers valid diagnostics and decision-

making. Real-time monitoring and event detection is supported by linking the point of 

perception to external healthcare systems. In particular, the responding and curing 

systems are involved for real-time care and emergency services delivery at the point of 

occurrence. 

5. Conclusion 

Integrating sensing devices that mutually measure parameters from the four WHO 

domains of health, well-being, and QoL is essential for disease prevention and automatic 

health alerts in smart homes and smart cars.  We integrate medical and non-medical 

sensing devices. Enriching the sensory layer network and developing hierarchical multi-

layer data fusion based on powerful computational nodes, supporting wired/wireless 

communication, facilitates on-board and distributed data acquisition and processing. 

This will reduce the traffic of raw data aggregation to high-level fusion. It also adds 

invaluable processed information at a lower level and shortens the processing time for 

information extraction out of the raw data. Bus-inherent synchronization supports data 

fusion for long-term diagnostics and event detection. The young and the elderly, the 

healthy and the disease-affected will benefit. In particular, we support the United Nations’ 

2030 Agenda for Sustainable Development [126], where the sustainable development 

goal (SDG) 3 is to ensure healthy lives and to promote well-being for all people of all 

ages as well as the WHO 13th General Programme of Work [127], which has three 

interconnected strategic priorities to ensure healthy lives and well-being for all: (i) 

achieving universal health coverage, (ii) addressing health emergencies, and (iii) 

promoting healthier populations. 
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