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Abstract. Acute kidney injury (AKI) is an abrupt decrease of kidney function which 
is common in the intensive care. Many AKI prediction models have been proposed, 
but an analysis of what is the added value of clinical notes and medical terminologies 
has not yet been conducted. We developed and internally validated a model to 
predict AKI that includes not only clinical variables, but also clinical notes and 
medical terminologies. Our results were overall good (AUROC > 0.80). The best 
model used only clinical variables (AUROC 0.899). 
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1. Introduction 

Acute kidney injury (AKI) is an abrupt decrease of kidney function, with a prevalence 

of up to 50% in the intensive care unit (ICU). Early recognition of AKI is crucial as the 

efficacy of intervention greatly depend on it. Several AKI prediction models have been 

built using clinical variables, e.g., vitals and laboratory measurements [2]. Few studies 

used the rich information contained in clinical notes, possibly because it is not well 

known how to represent such information in AKI prediction models. 

Knowledge graphs may enrich the representation of clinical notes in prediction 

models. A knowledge graph is a graph-based abstraction of knowledge to represent data 

from diverse sources. Medical terminologies, which are inherently complex, are often 

expressed as knowledge graphs, for example, the Unified Medical Language System 

(UMLS) [5] and SNOMED CT [6]. To the best of our knowledge, one study has used 

notes and knowledge graphs to predict AKI, but without using clinical variables [7]. So, 

a comparison of which type of information among clinical variables, clinical notes, and 

medical terminologies is most effective in AKI prediction modeling is not yet available. 

We aim to investigate whether adding information extracted from clinical notes and 

knowledge graphs into machine-learning prediction models to predict AKI can improve 

predictive performance. We developed and internally validated a model to predict AKI 

within the first 48 hours of admission, which includes not only clinical variables, but also 

clinical notes to provide a comprehensive view of the patients’ pathophysiologic 

condition. Furthermore, we aim to study what is the effect of enriching notes with 

external knowledge from UMLS or SNOMED CT on the models’ performance. 
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2. Method 

Data and population: We used data from the publicly available critical care database, 

Medical Information Mart for Intensive Care III (MIMIC-III). This database integrates 

comprehensive clinical data of patients admitted to an ICU at the Beth Israel Deaconess 

Medical Center in Boston, during 2001 to 2012 [8]. AKI was defined according to the 

KDIGO guidelines [9]. We included patients who aged 18  years or older at the time of 

ICU admission, have at least one measurement of serum creatinine or urine output, and 

whose length of stay in the ICU was at least 48 hours. To make sure patients have both 

clinical variables and notes available for our model, only ICU stays containing at least 

one note were retained. Data preprocessing is illustrated in the supplementary material.2 

Model development: Our AKI prediction model is based on Long Short Term Memory 

(LSTM) networks [10]. First, two independent LSTM models were built separately, one 

uses clinical notes as input and the other uses clinical variables. Then, the output of these 

two models were concatenated and given as input to a final layer to deliver an overall 

prediction which combines information from both clinical variables and clinical notes 

(the latter, optionally enriched with external information from knowledge graphs). 

Clinical notes were represented with Word2vec. To enrich notes with external 

knowledge from UMLS and SNOMED CT, we extracted three subgraphs, i.e., UMLS 

synonyms, SNOMED CT synonyms, and SNOMED CT parent-child relationships. We 

used retrofitting to generate a refined representation of clinical notes, using relational 

information from each subgraph to encourage linked words to have similar 

representations. More details are available in Section 1.1 of the supplementary material.2 

 

Figure 1. Architecture of the LSTM models used. 

The architecture of the overall LSTM model is shown in Figure 1. We used the same 

architecture in the two LSTM models for variables and notes, except that the LSTM for 

clinical notes has an embedding layer, whilst the LSTM for clinical features has an 

encoding layer. The former layer acts as a lookup table to return the word embeddings 

learnt as parameters by the model during training, while the latter is a linear layer to 

compress the high-dimensional and sparse input variables into a lower-dimensional 

continuous representation, easier to manipulate by the model. The LSTM layers are 

followed by a dropout layer, to help prevent models from overfitting, and another linear 

layer, which creates a second learning filter for our model before concatenating the 

output of the two models, when relying on both clinical variables and clinical notes. The 

overall model ends with a projection layer that returns the probability of a patient having 

or developing AKI. The model parameters are shown in the supplementary material.2 

Internal validation and performance measures: The dataset was randomly split into 

80% training, 10% validation, and 10% test sets. We measured discrimination with the 
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area under the receiver operating curve (AUROC) and the area under the precision-recall 

curve (AUPRC); calibration with calibration curves. 

3. Results 

The final dataset consisted of 46,985 ICU stays of 33,795 unique patients. Descriptive 

statistics of the population are in Section 2.1 of the supplementary material.2 

Table 1 outlines the discrimination (AUROC and AUPRC) of the models. Using 

only clinical variables achieved the best results. Exploiting clinical variables and notes 

performed better than only notes, and models with external knowledge achieved similar 

results to models without external knowledge. The calibration curves of the models are 

available in the supplementary material. Using clinical variables and notes retrofitted 

with parent-child relations yielded the best calibration, with a slight improvement on the 

models with only notes and with notes retrofitted with SNOMED CT synonyms. 

Table 1. Models’ discrimination with various inputs. We used six different input sets. Syn. stands for synonyms. 

Input sets Clinical 

variables 

Clinical 

notes 

Variables 

+ notes 

Variables + 

notes + 

UMLS syn. 

Variables + 

notes + 

SNOMED 

syn. 

Variables + 

notes + 

SNOMED 

parent-child 

AUROC      0.899 0.801 0.821 0.821 0.819 0.816 
AUPRC       0.957 0.898 0.910 0.910 0.909 0.908 

4. Discussion 

Our results shows overall good performances (AUROC > 0.80). The best-performing 

model (AUROC 0.90) used only clinical variables. Clinical notes retrofitted with parent-

child relations used together with clinical variable yielded the best calibration. 

When exploiting clinical notes, we used only 3,000 words to represent each patient, 

while the patients’ notes included over 13,000 words on average. This might be the main 

reason why clinical notes did not improve the discrimination. Clinical notes may still be 

a valuable source of information on AKI prediction. We examined important words by 

ranking the most frequent words in the clinical notes (see the supplementary material2). 

In most cases, these top ranking words appear to be clinically meaningful. For example, 

heparin is a medication used to prevent blood clotting during kidney dialysis. Edema, 

which is a sign of AKI, happens when failing kidneys do not remove extra fluid which 

builds up in the patient's body causing swelling in the legs, ankles, feet, and/or hands. 

Lasix is one diuretic that can treat fluid retention and swelling, which might be caused 

by kidney dysfunction. With more advanced approaches to preprocess raw text from the 

notes, it is possible that structured clinical features and unstructured clinical notes exist 

as complementary sources of information for machine learning models to predict AKI. 

Similar issues could explain why knowledge graphs did not affect the models’ 

discrimination. For example in UMLS, only 7,093 out of 359,080 medical concepts 

(roughly 0.02%) are single-word. Clinical notes often refer to multi-words concepts, such 

as end-stage chronic renal failure or end-stage kidney disease. Since our word 

embeddings represent single words, multi-word concepts cannot be captured. The 

representation of multi-word concepts may improve models’ performance. 

Our study has some limitations. First, the MIMIC III database includes US patients; 

thus our results may not generalize to other populations. Second, we performed a simple 
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train/validation/test split, which does not take into account the variability of 

train/validation/test sets. Third, we did not perform full hyperparameter tuning but relied 

on a set of parameters for our models pre-selected in preliminary experiments. 

As a strength, our study relies on a public dataset to encourage reproducibility and 

our code is available at bitbucket.org/aumc-kik/ml-cn-kg-4-aki-prediction. 

Future work includes exploring more-advanced preprocessing of notes, ranging 

from using more words per patient to represents multi-word concepts, as well as study 

different models, such as convolutional neural networks. A prospective validation is also 

needed to assess clinical utility and effect on patient outcomes. 

5. Conclusions 

Early recognition of AKI is essential for effective treatment of this disease in the ICU. 

In contrast to previous work, we used various types of information, i.e., clinical variables, 

clinical notes and knowledge graphs, and we studied what is the added value of clinical 

notes and knowledge graphs to predictive performance. We provided effective models 

to predict AKI in the ICU. All the models achieved good results. The best discrimination 

was achieved by using only clinical variables, the best calibration with retrofitted clinical 

notes and clinical variables. Our work contributed to combining clinical variables, notes 

and knowledge graphs, which may also be useful in other settings and populations. 
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