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Abstract. Critical care can benefit from analyzing data by machine learning 

approaches for supporting clinical routine and guiding clinical decision-making. 
Developing data-driven approaches for an early detection of systemic inflammatory 

response syndrome (SIRS) in patients of pediatric intensive care and exploring the 
possibility of an approach using training data sets labeled automatically beforehand 

by knowledge-based approaches rather than clinical experts. Using naïve Bayes 

classifier and an artificial neuronal network (ANN), trained with real data labeled 
by (1) domain experts ad (2) a knowledge-based decision support system (CDSS). 

Accuracies were evaluated by the data set labeled by domain experts using a 10-fold 

cross validation. The ANN approach trained with data labeled by domain experts 
yielded a specificity of 0.9139 and sensitivity of 0.8979, whereas the approach 

trained with a data set labeled by a knowledge-based CDSS achieves a specificity 

of 0.9220 and a sensitivity of 0.8887. ANN yielded promising results for data-driven 
detection of pediatric SIRS with real data. Our comparison shows the feasibility of 

using training data labeled automatically by knowledge-based approaches rather 

than manually allocated by experts. 
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1. Introduction 

Medical practice, especially within the pediatric intensive care, is a highly challenging 

and time pressuring domain. Long-term success of treatment and patient’s outcome 

depend on the timely detection of underlying diseases and an early initiation of a 

therapy.[1] Nowadays, detection of serious diseases can be supported by analyzing 

routine clinical data though data-driven applications. Together with the increasing 

availability of medical data such approaches gain in importance for clinical settings.[2] 

Hence, data-driven approaches are an a recent considered topic in the field of research.[3, 

4] One of these highly challenging diseases within the setting of the pediatric intensive 

care is the systemic inflammatory response syndrome (SIRS). In 2017, worldwide 2.9 

million deaths associated with SIRS were reported for the group of children under five 

years.[5] To accommodate the differences between adults and children the International 

Pediatric Sepsis Consensus Conference (IPSCC) has modified the existing adult 

diagnostic criteria into six age-depending criteria groups for diagnosing SIRS in pediatric 

patients.[6] According to these criteria SIRS in children manifests when two of the 

following four criteria, from which one have to be an abnormal temperature or leukocyte 

count, are met: I) hyper- or hypothermia, II) tachycardia, III) tachy- or bradypnoea, IV) 

leukocyctosis or leukopenia.[6] The appropriate antimicrobial therapy should be started 

within an hour of the onset of first symptoms to avoid a two to five times higher 

mortality.[7] The use of clinical decision-support systems (CDSS) and data-driven 

approaches can support early detection of SIRS. However, such approaches are rarely 

used in the medical routine to support clinical decision making.[2–4] In the context of 

this work, we strive for developing a data-driven approach for the detection of SIRS 

within the pediatric intensive care. To achieve this goal we aim at implementing two 

approaches based on (I) a naïve Bayes classifier and (II) an artificial neuronal network 

(ANN). Both are trained using a ground truth created by domain experts. The manually 

creation of labeled data as used in this work is a highly time-consuming and challenging 

task. Therefore, the second objective of this work is evaluating the feasibility of using 

trainings data labeled automatically by a knowledge-based CDSS rather than using 

perfect ground truth label allocated manually.[1] 

2.  Methods 

In this work we use an existing data set of routine data from the pediatric intensive care 

unit of the Hannover Medical School. This pseudonymized data set originates from a 

previously published study.[8] The data set consists of various vital parameters like 

temperature and blood pressure values, heart and respirations rates as well as laboratory 

test results and data from medical devices such as cooling blankets, ventilation and 

pacemaker for each of the included 168 pediatric patients. Laboratory test results include 

leukocyte, platelet and neutrophil counts as well as INR values derived from the 

prothrombin time. Every value comes with a specific timestamp documenting its 

measurement time by which a temporal sequence is ensured. Furthermore, the age of the 

respective patients is given, which is decisive for a correct pediatric SIRS diagnosis. In 

addition to the routine data, there is a ground truth describing whether patients suffered 
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from SIRS. For the generation of this ground truth two experienced pediatric intensive 

care physicians manually assessed the patients according to SIRS diagnostic rules 

defined by the IPSCC.[6] The resulting labeled data is used for training the data-driven 

algorithms. To improve the quality of the available data the data set has been cleaned 

and formatted. Furthermore different strategies for missing values were applied.[9] For 

ANN, missing values were replaced with previous occurred values within a parameter-

dependent time window. Values that could not be replaced with that imputation strategy 

were replaced with NULL values. For the naïve Bayes classifier, missing values were 

ignored. The evaluation of the algorithms comprised splitting the available data set into 

trainings and test data set and running multiple 10-fold cross validation. Furthermore, 

the ANN were trained using data automatically labeled by a knowledge-based CDSS and 

evaluated with the ground truth allocated manually by domain experts. 

3. Results 

The trained algorithms were evaluated individually with the ground truth. The results of 

multiple 10-fold cross validations for every approach can be found in Table 1. The 

reported values represent the calculated average from all validation rounds. Folds were 

generated per patient to avoid splitting related data. The approach based on the naïve 

Bayes classifier achieves an accuracy from 0.5425 to 0.5683. Specificity ranges from 

0.5848 to 0.6132 and sensitivity from 0.3510 to 0.4230. The ANN trained on data labeled 

by clinical experts achieves an accuracy of 0.8975, ranging from 0.8816 to 0.9174. The 

ANN using trainings data labelled by a knowledge-based CDSS achieves an accuracy of 

0.8963, ranging from 0.8693 to 0.9263. This ANN shows a slightly higher specificity, 

but a lower sensitivity than the ANN trained with the data labeled by domain experts. 

Table 1. Overview of aggregated results of multiple 10-fold cross validations 

 Accuracy Specificity Sensitivity 
Naïve Bayes Classifier 0.5512  

[0.5425-0.5683] 
0.6047  

[0.5848-0.6132] 
0.3894 

 [0.3510-0.4230] 

ANN trained with data 

labeled by domain experts 

0.8975 

[0.8816-0.9174] 

0.9139 

[0.8558-0.9684] 

0.8979 

[0.8650-0.9231] 

ANN trained with data 
labeled by a CDSS 

0.8963 
[0.8693-0.9263] 

0.9220 
[0.8357-0.9757] 

0.8887 
[0.8713-0.9163] 

The architecture of the used ANN is shown in Table 2.
 

Table 2. Architecture of the used artificial neuronal network  

Layer Type Number of neurons Activation function 
1 Input 8 x 1   

2 Hidden 6 tanh 
3 Output 2 softmax 

4. Discussion 

With our work, we aimed at examining data-driven approaches for SIRS detection for 

patients of the pediatric intensive care. Furthermore, we strived to explore the feasibility 

of using a training data labeled by a knowledge-based CDSS instead of laborious labeled 

data by clinical experts. Limitations within this work are present in regards of 

transferability of the approach to other areas and the development and evaluation of the 
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used CDSS. Although the naïve Bayes classifier is well known as a solid baseline 

approach for starting data-driven research [9] our approach based on the naïve Bayes 

classifier reached a poor accuracy of 0.5512 for a binary classification problem. Even a 

comparably simpler classifier as ZeroR [10] that just predicts on basis of the majority 

class would have yielded a higher accuracy of approximately 0.74 for this use case. In 

contrast, the ANN achieved a promising accuracy. Moreover, literature review revealed 

that the developed ANN algorithm yielded better results than previously published data-

driven approaches for SIRS detection in pediatric patients.[3, 4] The ANN using a data 

set labeled by a knowledge-based CDSS rather than clinical experts achieved relatively 

comparable results. This shows the feasibility of using such approaches more often in 

the future to relieve clinical experts and avoid laborious manual labeling of data sets. 

However, the development of such CDSS suited for providing label for this use case is a 

time-consuming task itself that could lead to vast amounts of training data.[1] 
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