
A Deep Learning Program to Predict Acute 

Kidney Injury

Xiaoqiang Lia,1

aHeidelberg University, Germany

Abstract. Acute kidney injury is a dangerous and sometime fatal clinical situation, 
which can cause irreversible damage. If we can predict it earlier and make 

appropriate prevention before its outbreak, kidney injury could be avoided. One 

challenge of early recognition of AKI is that the most e-alerts have focused on 
creatinine-based algorithms, but the elevation of serum creatinine lags behind renal 

injury. We use recurrent neural network (RNN) to make data mining on laboratory 
results of MIMIC-III Database. At first, we transfer the case data into Pandas 

DataFrame of series framed for supervised learning. Then we can use RNN predicts 

the next serum creatinine values (SCr) based on the last laboratory test results after 
emergency admissions. We train the RNN on whole dataset (i.e. multi-cases 

prediction) with LSTM. As the result shown, this prototype can predict criteria (SCr) 

of AKI with a RMSE (Root Mean Square Error) of 0.017mg/dL.
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1. Introduction

AKI (Acute kidney injury) is one of a number of conditions that affect kidney structure 

and function. AKI is defined as any of the following (Not Graded) [1]:

1. Increase in SCr (Serum creatinine) by >=0.3 mg/dl (>=26.5 lmol/l) within 48 

hours; or 

2. Increase in SCr to >=1.5 times baseline, which is known or presumed to have 

occurred within the prior 7 days; or 

3. Urine volume <0.5 ml/kg/h for 6 hours.

A recent clinical practice assessment concluded there was an unacceptable delay in 

recognizing AKI in 43% of those that developed the condition after admission [4]. One 

challenge of early recognition of AKI is that the most e-alerts have focused on creatinine-

based algorithms, but the current rule-based alerts cannot improve survival, because the 

elevation of serum creatinine lags behind renal injury [7].
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2. Method

2.1. Mathematical methodology of this study

This study focuses on creating a program prototype to predict acute kidney injury by 

using the deep learning algorithm. Deep learning architectures such as deep neural 

networks, deep belief networks, recurrent neural networks (RNN) and convolutional 

neural networks have been applied to many fields, where they have produced results 

comparable to and in some cases surpassing human expert performance [2].

Step 1: We transform Bayes' theorem to a format, which looks like Sigmoid 

Function:

Where: P(C|x) is conditional probability, “a” represents function “a(x)”:

Step 2: We use Gaussian distribution to calculate P(x|C):

So we can transform the function “a” to a format like (w*x + b), take “a” back to 

step 1, we get the whole Sigmoid Function now:

Where:
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Step 3: if we only have C1 and C2, then P(C2|x):

If we have C1, C2, … Cn, then P(Ck|x):

Where k n.

After step 1 to 3, we get the Softmax function based on Bayes' theorem. At last, we 

build our recurrent neural network for prediction. On each ICU labor test (time series), 

the input is fed forward and a learning rule is applied. The back-connections save a copy 

of the previous values of the hidden units in the context units. Thus, it can learn the 

relation of time series data and make a prediction based on the history. That is why our 

RNN can predict the serum creatinine elevation, which normally lags behind the renal 

injury.

Figure 1. Structure of the recurrent neural network

Step 4: We use our neural network, which is based on Bayes' theorem, to predict 

real number (e.g., serum creatinine, range 0.00 – 2.00), but Bayesian network uses the

probability value (0.00 – 1.00) as input and output. Therefore, we rescale the serum

creatinine value to fit the input of Bayesian network and rescale the result (0.00 – 1.00) 

back to serum creatinine range (0.00 – 2.00) for prediction.

2.2. Data-Set

MIMIC-III (Medical Information Mart for Intensive Care III) is a database comprising 

de-identified health-related data associated with over forty thousand patients who stayed 

in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012

[3]. The patient data used in our study contains approximately 60000 admissions of 

patients including information such as patient demographics, vital signs, laboratory test 

results. In this prototype, we consider laboratory test results e.g., SCr (Serum creatinine), 

bicarbonate, blood urea nitrogen (BUN), chloride, international normalized ratio (INR), 

white blood count (WBC) as features, because these indicators are related to AKI 
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according to the past studies [4]. In this study the patient data do not have to be labeled 

manually.

2.3. Programming

Mining all the information from raw Data and dimensionality reduction are two main 

targets of data processing for neural network. Long short-term memory (LSTM) is an 

artificial recurrent neural network (RNN) architecture used in the field of deep learning

[5]. It cannot only process single data points, but also entire sequences of data. LSTM 

networks are well suited to making predictions based on time series data, since there can 

be lags of unknown duration between important events in a time series. We use the ICU

case data as multi-Case multivariate time series. At first, we transfer the case data into 

Pandas DataFrame of series framed for supervised learning. As example of this prototype, 

this program predicts the next serum creatinine values (SCr), which is the most important 

indicator of AKI.We use 3 time steps(n=3) for 1 prediction, i.e., we use the laboratory 

results of 3 time steps of one case to predict the next SCr value of next time step. For 

multi-cases predictions, the data-structure is as follow:

Figure 2. SCr. Prediction of multi-cases

2.4. Training of neural network

Keras API is used to train the dataset. Keras is a deep learning API written in Python, 

running on top of the machine learning platform TensorFlow [6], which is installed on 

CUDA GPU. GRU is also used and compared with LSTM to get better results and 

performance. 60% dataset is used for training and 40% for evaluation of training.

3. Result

Serum creatinine is reported as milligrams of creatinine to a deciliter of blood (mg/dL), 

n: timesteps for 1 prediction, inv_yhat: forecast, inv_y: actual, RMSE: Root Mean 

Square Error. We got following results:

n=1: inv_yhat: [1.33949034 1.44861898 1.37046677], inv_y: [0.8 0.8 1.3], Test 

RMSE: 0.489

n=2: inv_yhat: [1.32214486 1.41522023], inv_y: [0.8 1.3], Test RMSE: 0.378

n=3: inv_yhat: [1.28334119], inv_y: [1.3], Test RMSE: 0.017

If set n=4, we got “out of range” error, so we use n=3 as our result. The reason of 

“out of range error” is that some of our patients have only 4 labor results during their 

ICU stays. If n = 4, no prediction can be made. We should not delete such patients’ data 
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because they can give contribution for prediction if we set n<4. We train the RNN on 

whole dataset (i.e., multi-cases prediction). As the result shown, this prototype can 

predict criteria (SCr) of AKI with a RMSE (Root Mean Square Error) of 0.017mg/dL.

4. Discussion

The prediction of AKI is very challenging; therefore, this study is only trying to make a 

prototype of a prediction approach, following points can be considered for further 

improvement of the prediction’s precision: 

� Prediction should be grouped by demographics to avoid Simpson's paradox. 

E.g., using data of same age/sex group for prediction is better than mixed data.

� Influence of medications and comorbidities should be considered. Vital signs 

measured at the bedside such as ECG, SpO2, and respiration rate could also be 

helpful for AKI development prediction. However, because our activation 

function of neural network is based on Bayesian theorem, the conditional 

independence of features should be further analyzed and managed before we 

can use them to minimize overfitting.

5. Conclusion

Because of the complexity of the clinical data, it is difficultly to precisely analyze the 

clinical features manually by using statistical methods such as linear regression. Our 

purpose of feature engineering is keeping the original information of data and dimension 

reduction at same time, our algorithm can achieve these goals automatically, it can 

predict some important laboratory test results of acute kidney injury, such as serum 

creatinine, with a RMSE (Root Mean Square Error) of 0.017mg/dL. Therefore, our 

program can make early alert before AKI occurs.
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