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Abstract. Big data reanalysis has the potential to generate novel comparative 

analyses which aim to generate novel hypotheses and knowledge. However, this 

approach is underutilized in the realm of cancer research, particularly for cancer 
stem cells (CSCs). CSCs are a rare subset of tumor cells, which dedifferentiate from 

healthy adult cells, and have the potential for self-renewal and treatment resistance. 

This analysis utilizes two publically available single-cell RNA-seq datasets of liver 
cancer and adult liver cell types to demonstrate how reanalysis of big data can lead 

to valuable new discoveries. We identify 519 differentially expressed genes between 

liver CSCs and healthy liver cell types. Here we report the potential novel liver CSC 
dedifferentiation factor, Msh Homeobox 2, which was significantly upregulated in 

liver CSCs by 1.36 fold (p-value < 1E-10). These findings have the potential to 

further advance our knowledge of genes governing the formation of CSCs. 
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1. Introduction 

The improvements in high-throughput genomics through the funding of National 

Institutes of Health and other agencies are driving ever increasing volumes of digital data 

to be available in the public domain [1]. As the number of peer-reviewed publications 

that utilize previously deposited data continues to grow, the importance of shared big 

data in catalyzing knowledge discovery and predictive analytics continues to be further 

illustrated. Specifically, cancer stem cells (CSC) are a promising target for research 

which utilizes publically available single cell sequencing archives, due to the needs of 

isolating CSCs from the surroundings [2]. As one of the leading frontiers of oncology, 

the study of CSCs provides an interesting insight into the causes of therapeutic resistance, 

metastasis, and tumor recurrence [3]. Although much work has been done on identifying 

how the similarities between CSCs and stem cells promote their abilities to self-renew, 

less is known about how CSCs arise from terminally differentiated cell types and about 

the key triggers that initiate their stemness [3]. 

Although a lot research has been dedicate to the origins of CSCs, it is still not entirely 

clear how adult terminally differentiated cell types are able to transform into cancer cells 

[3]. In particular, it has been previously shown that adult terminally-differentiated 

hepatocytes undergo dedifferentiation which then leads to hepatocellular carcinoma [4]. 

The exact process of dedifferentiation which leads to the establishment of a CSC 
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population, however, remains to be elucidated. To help answer this question, we 

undertook a reanalysis of publically available single-cell RNA-seq datasets from primary 

liver cancer samples and healthy adult samples [5, 6]. Due to the deadliness of liver 

cancer and the difficulty of detecting and treating primary liver cancers, it is important 

to understand how treatment of liver CSCs can be utilized to promote efficacy of 

treatment [7]. Using the cost-effective approach of reanalyzing publically available 

datasets, we examined the differences in expression between liver CSCs and healthy 

adult liver cell types, with a focus on understanding the dedifferentiation process. 

2. Methods 

Expression data was obtained for the liver cancer [5] and fetal and adult healthy liver [6] 

studies. For the purposes of our reanalysis study, gene expression data count matrices 

were utilized as the starting point. This consideration was done due to the unavailability 

of the raw data from the liver cancer study, as it is currently still under embargo. As the 

two studies utilized similar approaches to sequencing, assembly, and gene calling, we do 

not expect any systematic issues in the gene expression profiles, which cannot be 

controlled for using the stringent normalization we employed. 

The following studies were utilized for liver cancer cell profiles (GSE125449) [5] 

and healthy liver cell profiles (GSE130473) [6]. Pre-processing normalization steps 

included filtering out low coverage samples, low coverage genes, and non-protein coding 

genes. Samples with fewer than 1000 total reads were excluded. In addition to excluding 

genes with 0 reads in all remaining samples, we excluded all non-protein coding genes. 

The normalization and differential expression analysis was performed using the 

edgeR [8] R package, using the gold standard methodology. To further account for 

possible systematic differences in mRNA detection between the two datasets, we utilized 

a batch effect correction in the analysis. Study type was also included in the design matrix 

as an additional variable. The Bonferroni multiple testing correction was used to control 

the false discovery rate. 

Gene Ontology (GO) analysis was done using the DAVID 6.8 [9] Functional 

Annotation Tool, using Benjamini multiple testing correction. 

3. Results 

Using previously published single-cell RNA-seq data for liver cancer [5] and fetal and 

adult healthy liver [6], we reanalyzed 2434 single-cell samples across 18,263 protein-

coding genes. To examine the differences between adult liver cells and liver CSCs, we 

preformed differential expression analysis between two types of adult liver cells 

(CD235a-/EpCAM+/ASGPR1+ and CD235a-/EpCAM+) and the liver CSCs. The adult 

liver cells totaled 444 samples, and the liver CSCs totaled 1990 samples. Of the 18,263 

protein coding genes included in the differential expression analysis, we identified 519 

genes that were differentially expressed between liver CSCs and adult liver cell types.  

Of these, 134 were significantly higher expressed in the liver CSCs, while 385 protein 

coding genes were significantly higher expressed in the adult liver cell types. 

Based on Gene Ontology analysis, genes with significantly higher expression in liver 

CSCs were significantly enriched in several GO terms that are hallmarks of higher rates 

of cell division seen in cancer cells. This includes structural constituent of ribosome (p-
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value = 8.9E-27), translation initiation (p-value = 9.8E-24), and rRNA processing (p-

value = 1.1E-20). Additionally, liver CSCs had significant enrichments of mitochondrial 

related GO terms. These include mitochondrial respiratory chain complex I (p-value = 

3.1E-5), NADH dehydrogenase (ubiquinone) activity (p-value = 3.2E-5), and ATP 

biosynthetic process (p-value = 2.9E-3). CSCs have been previously shown to be more 

reliant on ATP oxidative metabolism relative to other cancer cell types [10]. Potentially 

of most interest is the observed enrichment of over-expressed genes that are involved in 

the extracellular vesicle (p-value = 6.2E-12). It has recently been shown that extracellular 

vesicles are important factors in driving cell dedifferentiation [11, 12]. Similarly, we also 

see significant enrichment of ncRNA processing (p-value = 3.2E-14), supporting recent 

evidence that ncRNAs are able to drive dedifferentiation phenotypes [13]. 

On the other hand, liver CSCs showed significant decreases in proteins involved in 

normal liver function. This includes organic acid metabolic process (p-value = 8.1E-18), 

carboxylic acid metabolic process (p-value = 1.2E-17), lipid metabolic process (p-value 

= 4.3E-7), and drug metabolic process (p-value = 5.4E-5). 

Next we examined if previously identified dedifferentiation protein were more 

abundant in the liver CSCs, and known differentiation factors more abundant in normal 

liver cell types. As expected, Hepatocyte Nuclear Factor 4 Alpha (HNF4A), which acts 

as the primary differentiation factor of liver cell types [14], was significantly higher 

expressed in healthy liver cell types (2.96X, p-value = 4.43E-5). We found Transforming 

Growth Factor β1 (TGFB1) to be significantly upregulated in liver CSCs relative to adult 

differentiated liver cell types (4.74X, p-value = 1.46E-104). This result further confirms 

the strong implication of TFGB1 in driving the mesenchymal/stemness phenotype 

observed in hepatocellular carcinomas [15]. Additionally, Msh Homeobox 2 (MSX-2) 

was significantly upregulated in liver CSCs (1.36X, p-value = 1.99E-17). Although 

MSX-2 has been previously implicated in dedifferentiation of myotubules [16], MSX-2 

has not previously been reported as a potential dedifferentiation factor of liver CSCs. 

4. Discussion 

With the diversity of single-cell next generation sequencing available from cancer 

studies, we can begin asking novel questions beyond the scope of the original researchers. 

Cell gene expression profiles provide us with an important insight into transition to 

cancerous cells, particularly how dedifferentiation plays a role in generating CSCs. The 

use of public big data is critical to this aim. Specifically, we aimed to understand how 

the expression profiles of CSCs compare to healthy adult liver cell types in order to better 

understand the dedifferentiation capabilities of CSCs, using two publically available 

single-cell RNA-seq datasets. 

We examined the differences in expression profiles of adult liver cells and the liver 

CSCs, revealing 519 differentially expressed genes. Among these, we see significant 

upregulation of genes involved in translation, extracellular vesicle proteins, and ncRNA 

processing in liver CSCs. This is mirrored by significant downregulation of normal liver 

metabolic proteins. Additionally, we see downregulation of a key liver differentiation 

factor, HNF4A, and upregulation of dedifferentiation factors, TGFB1 and MSX-2. These 

results provide further indication of the importance of ncRNAs and TGFB1 in promoting 

dedifferentiation in CSCs [13, 15]. Further, we report the first evidence of the importance 

of MSX-2 in the dedifferentiation of liver CSCs. Our work concurs with previous results 

of liver CSC studies on the importance of dedifferentiation factors [17]. 
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These results provide an insight into cancer biology made possible by utilizing 

publically available big data. Our results provide a unique insight into the process of 

dedifferentiation in forming liver CSCs. In particular, revealing novel potential 

dedifferentiation factors, such as MSX-2. 

5. Conclusions 

Our analysis presents the power and utility of reanalyzing publically available single-cell 

RNA-seq datasets to ask novel biomedical questions. Focusing on identifying potential 

dedifferentiation factors that promote the generation of liver CSCs from adult liver cell 

types, we have identified increased expression of ncRNA processing and a potentially 

novel dedifferentiation factor, MSX-2, acting in liver CSCs. Our work demonstrates the 

value of shared big data to catalyze knowledge discovery and predictive analytics. 
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