
Prediction of Postoperative Speech 
Dysfunction Based on Cortico-Cortical 

Evoked Potentials and Machine Learning 

Timur ISHANKULOVa,1, Gleb DANILOVa, David PITSKHELAURIa, Oleg TITOVa, 

Anna OGURTSOVAa, Svetlana BUKLINAa, Evgeniy GULAEVb, Tatyana 

KONAKOVAa and Andrey BYKANOVa 
a

 Laboratory of Biomedical Informatics and Artificial Intelligence, National Medical 
Research Center for Neurosurgery named after N.N. Burdenko, Moscow, Russian 

Federation 
b

 National Medical Research Center of Traumatology and Orthopedics named after 
N.N. Priorov, Moscow, Russian Federation 

Abstract. The possibility of postoperative speech dysfunction prediction in 

neurosurgery based on intraoperative cortico-cortical evoked potentials (CCEP) 
might provide a new basis to refine the criteria for the extent of intracerebral tumor 

resection and preserve patients’ quality of life. In this study, we aimed to test the 

quality of predicting postoperative speech dysfunction with machine learning based 
on the initial intraoperative CCEP before tumor removal. CCEP data were reported 

for 26 patients. We used several machine learning models to predict speech 

deterioration following neurosurgery: a random forest of decision trees, logistic 
regression, support vector machine with different types of the kernel (linear, radial, 

and polynomial). The best result with F1-score = 0.638 was obtained by a support 

vector machine with a polynomial kernel. Most models showed low specificity and 
high sensitivity (reached 0.993 for the best model). Our pilot study demonstrated 

the insufficient quality of speech dysfunction prediction by solely intraoperative 

CCEP recorded before glial tumor resection, grounding our further research of 
CCEP postresectional dynamics. 
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1. Introduction 

Structural and functional neural networks underlying such human brain functions as 

speech are a permanent research subject for modern brain connectomics [1]. 

Intraoperative preservation of speech function is one of the most important goals in 

neurosurgery of intracerebral tumors located near eloquent areas [2]. The monitoring of 

the effective connections through language pathways during brain tumor surgery can be 

achieved by recording cortico-cortical evoked potentials (CCEPs) [3–5]. Nowadays the 

number of such studies is very limited.  
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This pilot study aimed to predict speech function deterioration in the early 

postoperative period based on intraoperative cortico-cortical evoked potentials [6] 

recorded before glial tumor removal. The hypothesis we tested was that the baseline 

CCEPs might contain predictors of postoperative speech disorders. The exploration of 

CCEPs patterns might contribute to refine the criteria for the extent of intracerebral tumor 

resection and preserve patients’ quality of life. 

2. Methods 

Intraoperative registration of CCEPs [7] was performed using a 32-channel 

intraoperative monitoring system “Neuro-IOM” (Neurosoft LLC, Russia) and a pair of 

subdural electrode strips. One electrode was placed in the frontal speech region (Broca's 

area); the second electrode was located on the surface of the upper temporal gyrus in its 

posterior parts and the supramarginal gyrus. The CCEPs were registered before and after 

resection of the tumor. 

The dataset obtained contained recordings of 26 patients with brain gliomas in 

eloquent areas. The number of CCEP recordings for each patient was not set in this pilot 

study (varied from 1 to 8). The dataset included a set of files (n = 105, 1 file for each 

recording) with intraoperative CCEPs records before tumor removal. Each record 

contained 8 or 16 signal channels with high correlation between them. 

The duration of the signal recording after stimulation was 300 ms. Each signal record 

included 7,500 discrete values in 8 or 16 channels. A vector of 7500 values was averaged 

and smoothed by the moving average method, transforming into a new vector consisting 

of 300 average values. Stimulation artifacts were automatically removed by comparing 

with the amplitude of the remaining signal part multiplied by 1.25. If this value was 

exceeded, then the starting index was shifted up to 10 ms to the right. In addition, the 

starting index of the signal was always shifted by 1 ms, even if the artifact was not 

observed, in order to exclude the influence of the first millisecond of the signal. 

The basic set of signal features included signal amplitude, wave type, latency up to 

a peak (positive or negative) value [7]. Neurophysiologists typically used them to 

describe the CCEPs records. A medical expert indicated the characteristics of speech 

dysfunctions before and after surgery for each patient. 

The average value across the entire signal was calculated and used as an additional 

feature. The peak values (local extremums) were calculated with a minimum distance 

between the peaks equal to 20 ms and a minimum peak height of 5 μV. 

We formed the target variable based on the changes in the cumulative assessment of 

the patient's speech dysfunctions after surgery ranging from 0 to 45 (0 is the norm). The 

binary target variable took a value of 1 if the speech dysfunctions estimate increased after 

surgery (speech worsened) and a value of 0 otherwise (speech preserved). 

Several machine learning models were used to predict the deterioration of speech 

functions in the postoperative period: a random forest of decision trees (RF), logistic 

regression (LR), support vector machine (SVM) with different types of kernel – linear 

(Lin), radial basis function (RBF) and polynomial (Poly). Each test was performed after 

the data were randomly sampled into training (80%) and testing (20%) subsets with 

stratification. The model was trained on a training subset; 5-fold cross-validation (CV) 

was applied to evaluate the model’s quality before the final testing. Each machine 

learning model was tested 300 times with stratified resampling (1500 tests in total). This 

approach allowed to do the calculations with low margin of error (<0.005). 
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We used standard metrics to evaluate the test results: accuracy on validation samples 

within the cross-validation (CV), specificity (Spec), sensitivity (Sens), the proportion of 

correct classifier responses (Acc), precision (Prec), recall (Rec), F1-score (F1) and the 

area under the receiver operating characteristic curve (AUC). The results for particular 

machine learning model were averaged across all metrics to exclude the influence of the 

“by chance” data split and to reduce the margin of error. We separated data by patients 

— all the recordings of each patient were included into the only one subset: train or test. 

3. Results 

The results of our classification experiments are presented in Table 1. 

Table 1. Classification of CCEPs data by binary outcome with 5 machine learning models. 

Model CV Spec Sens Prec Rec Acc F1 AUC 
RF 0.680 0.319 0.809 0.569 0.564 0.606 0.530 0.564 

LR 0.687 0.168 0.965 0.555 0.566 0.649 0.500 0.566 
SVМ (Lin) 0.674 0.098 0.944 0.411 0.521 0.612 0.432 0.521 

SVМ (RBF) 0.730 0.324 0.973 0.649 0.649 0.716 0.604 0.649 

SVМ (Poly) 0.747 0.370 0.993 0.683 0.681 0.747 0.638 0.681 
 

The results of cross-validation were expectedly higher (equal in case of SVM (Poly) 

model) compared to the accuracy of test results. The difference between mentioned 

metrics varied from 0 to 0.074 (up to 12% decrease). 

The best result for the F1-score metric was 0.638 using the SVM (Poly) model. A 

high sensitivity index was observed in most tests, reaching 0.993 in the best model. The 

specificity of the best solution was 0.370 — the model correctly identified only 37% of 

patients with improved/preserved speech functions. 

4. Discussion 

Our pilot research considered methods for predicting the deterioration or 

improvement/preservation of speech functions in the postoperative period using machine 

learning algorithms. This is the pioneering study to apply machine learning for predicting 

speech dysfunctions based on CCEP data to the best of our literature knowledge. 

Researchers rely on such parameters as the amplitude of value fluctuation and the 

latency to the signal peak in the analysis of CCEP data (7–11). We utilized the average 

for all signal values, the latency to the signals’ peak states (local extremums), and their 

values in μV in addition to common parameters. 

The obvious limitations of this study are a relatively small number of patients (n = 

26), several recordings per patient in one sample and the insufficient number of CCEP 

recordings after tumor removal. Increasing the amount of data may lead to a higher 

classification quality. 

In our classification approach, we used a binary target variable. Thus, the dataset 

was split with a smaller possible imbalance compared to using the target variable broke 

down into several categories according to speech disorders degree (in the latter case, 

there was a significant imbalance between classes). It will be possible to test CCEPs 

classification by speech dysfunctions severity with the increased number of patients. 
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This pilot study demonstrated the insufficient quality of speech dysfunction 

prediction by solely intraoperative CCEP recorded before glial tumor resection. Our 

future work will be related to testing new methods for predicting speech disorders, 

focusing on postresectional CCEP dynamics, adding new features to existing models, 

and developing new machine learning models, including ensembles. 

5. Conclusion 

In this pilot study, the quality of speech dysfunction prediction after the neurosurgical 

interventions in the eloquent area was demonstrated using traditional machine learning 

methods based on the CCEP data registered before the main stage of surgery. Early 

detection of the speech dysfunction precursors, according to the CCEP data, can 

significantly affect the results of such neurosurgery. Thus, it is necessary to continue the 

research of CCEPs that contributes to a better understanding of speech dysfunctions 

resulting from surgical interventions and greater surgery safety. 

The research was supported by the Russian Foundation for Basic Research grant 
19-29-01231. 
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