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Abstract. We present a user acceptance study of a clinical decision support system 

(CDSS) for Type 2 Diabetes Mellitus (T2DM) risk prediction. We focus on how a 

combination of data-driven and rule-based models influence the efficiency and 
acceptance by doctors. To evaluate the perceived usefulness, we randomly 

generated CDSS output in three different settings: Data-driven (DD) model output; 

DD model with a presence of known risk scale (FINDRISK); DD model with 
presence of risk scale and explanation of DD model. For each case, a physician 

was asked to answer 3 questions: if a doctor agrees with the result, if a doctor 

understands it, if the result is useful for the practice. We employed a Lankton's 
model to evaluate the user acceptance of the clinical decision support system. Our 

analysis has proved that without the presence of scales, a physician trust CDSS 

blindly. From the answers, we can conclude that interpretability plays an important 
role in accepting a CDSS. 
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1. Introduction 

Clinical decision support systems (CDSS) are made to support evidence-based patient 

care and shared-decision making to improve health and wellbeing of patients. While 

various studies have demonstrated that CDSSs decrease medical errors and improve 

clinical outcomes, we can see that CDSSs did not yet reach their full potential due to 

low acceptance and adoption [1,2]. Among the factors that influence adoption and 

acceptance we can name relevance of the provided information and the validity of the 

system [3]. Validity and ability to interpret the decision support output can be 

especially problematic for data-driven CDSSs [4]. One of the approaches to solve the 

interpretability problem is a hybrid approach [5] where a data-driven decision support 

is complimented by rule-based methods and scales. We have implemented a CDSS for 

diabetes complications management using a three-stage hybrid approach [6]. The goal 

of this study is to understand how a combination of data-driven decision support 

methods with a rule-based interpretation affect the acceptance and adoption by doctors. 
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2. Method 

2.1. Decision support system 

The CDSS in focus of this study predicts 5 years risks of type 2 diabetes (T2DM) 

mellitus complications [7]. It includes machine learning based inference along with a 

FINDRISK scale [8]. The model that is the basis of the CDSS does not require 

sophisticated medical tests and provides the following prediction efficiency: sensitivity 

of 76.0% and specificity of 60.2%. The interface of the CDSS with a synthetic data is 

shown in the figure 1.  

 
Figure 1. CDSS interface 

 

The structure of the study is based on the theory of planned behavior (TPB).  It 

considers attitude, subjective standards, and perceived behavioral control influencing 

behavioral intentions (and actual behavior).  

2.2. CDSS efficiency 

We estimated a perceived usefulness of the systems. This metric represents a degree, to 

which users suppose that utilizing a decision support system will increase their 

efficiency. We have conducted a survey with physicians who have experience of 

operating the system. The survey was structured into two phases. The evaluate the 

perceived usefulness we randomly generated CDSS output in three different settings:  

� (A) Data-driven model output,    

� (B) Data-driven model with a presence of FINDRISK scale 

� (C) FINDRISK scale and explanation.  
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For each type of settings, we randomly generated a questionnaire with synthetic T2DM 

cases and questions. Each case was presented to a physician with a patient's basic 

information and vital signs including antithrombotic therapy (AH), physical 

activity, blood sugar, short hereditary anamnesis, blood pressure) and a setting specific 

(A-C) CDSS output.   

For each case, a physician was asked to answer 3 questions:  

� if a doctor agrees with the result,  

� if a doctor understands it,  

� if the result is useful for the practice.  

All the questions could be answered using a Likert scale with 5 points from 1 (strongly 

disagree) to 5 (strongly agree).  

2.3. User acceptance 

The acceptance of the decision support system was evaluated using a Wilson’s model 

of electronic health solutions’ acceptance modified by Lankton [9]. The model enables 

assessing the following metrics: behavioral intention to use (BI), intrinsic motivation 

(IM), perceived ease-of-use (PEOU), and perceived usefulness (PU) of the decision 

support system. We measured BI and PU using 2 objects for each metric.  IM and 

PEOU metrics were measured with 3 objects. To rate each item, we applied Likert 

scale with 5 points: from 1 (strongly disagree) to 5 (strongly agree): 

1. Behavioral intention to use   

a. I will use the CDSS to have a second opinion on the patient’s risks   

b. I believe I will utilize the CDSS in my practice   

2. Intrinsic motivation   

a. The CDSS helps me to make better informed decisions   

b. I trust the CDSS as it provides interpretations of the output  

c. I trust the system as it provides references to the standard scales   

3. Perceived ease of use   

a. The CDSS outcomes are clear and understandable    

b. The interpretations are clear, and I understand the reasoning    

c. The visualizations are well-defined, and I don’t spend much time on 

their interpretation   

4. Perceived usefulness   

a. CDSS improves the effectiveness of managing risks of patients   

b. It explains me why a certain risk assessment is done   

After we collected and analyzed the results of the user acceptance evaluation, we have 

organized a study to deeper understand the reasoning of the doctors when working with 

the CDSS. We designed a study as a series of semi-structured one-to-one interviews 

with an interview script [10], which was created and approved by the research team.     

1. Can you understand a model output without interpretations?   

2. Are you convinced with the interpretations that the system provides?   

3. Do you require an interpretation to critically assess a model output?   

4. Does a reference to a scale facilitate assessment of a recommendation?   

5. Can you please give any improvement comments or suggestions? 

G. Kopanitsa et al. / Assessing Acceptance Level of a Hybrid CDSSs20



3. Results 

We have gathered 161 answers with equal distribution for each setting: 53, 55, 53 for 

A, B, C, respectively (Table 1).    

 

Table 1. Case scoring mean (95% confidence interval)  

  Agree  Understand  Use  
Setting A  4.05 (3.78, 4.32)  4.64 (4.42, 4.85)  3.8 (3.05, 4.80)  

Setting B  3.16 (2.94, 3.38)  3.98 (3.66, 4.29)  3.38 (3.11, 3.64)  

Setting C  3.41 (3.15, 3.67)  4.24 (3.90, 4.54)  3.52 (3.20, 3.85)  

All settings  3.54 (3.38, 3.69)  4.28 (4.12, 4.45)  3.56 (3.39, 3.73)  

The median values for behavioral intention to use, intrinsic motivation, perceived ease-

of-use, and perceived usefulness (PU) demonstrated a general acceptance of the CDSS 

by the users (Table 2).  

 

Table 2. CDSS acceptance metrics  

Metric, Item  Median  Max  Min  
1. Behavioral intention to use   3   5   2   
1a. I will use the CDSS to have a second opinion on the patient’s risks    3   5   3   

1b. I believe I will utilize the CDSS in my practice 3   4   2   

2. Intrinsic motivation   3   4   2   
2a. The CDSS helps me to make better informed decisions    3   4   2   

2b. I trust the system as it provides interpretations of the results   3   4   3   

2c. I trust the system because it provides references to the standard scales   3   4   2   
3. Perceived ease of use   4   5   2   

3a. The model outcomes are clear and understandable    4   5   3   

3b. The interpretations are clear, and I understand the reasoning    4   4   2   
3c. The visualizations are clear and I don’t spend much time on their interpretation   4   5   3   

4. Perceived usefulness   4   5   2   

4a. CDSS improves the effectiveness of managing risks of patients    4   4   2   
4b. It explains me why the a certain risk assessment is done   4   5   3   

4. Discussion and Conclusions 

The analysis showed the highest scores were obtained in Setting A, while the lowest is 

obtained in Setting B. Our interview analysis has proved that without the presence of a 

standard scale, a physician trust blindly a CDSS results. This can increase type I 

errors, which can be lowered in comparison to the basic scales.  We have analyzed the 

answers of the participating doctors to understand the reasoning behind the acceptance 

evaluation. From the answers of the doctors, we can conclude that interpretability 

provided by rule-based scales play an important role in understanding and accepting a 

CDSS output, especially when interpretation is done on the feature basis. The system’s 

output is convincing, and the doctors can act upon it. Interpretations also help doctors 

to identify incorrect conclusions when a system produces them. They still see room for 

improvements, as not everything should be measured in numbers. The doctors see the 

importance of combining data-driven output with rule-based scales. Despite the 

understanding that data-driven models are based on high-quality, real-world data, 

doctors still ask for standard and known tools as they are created from the formal 

research results and widely accepted clinical guidelines. Doctors still believe that 

experts should be involved in the model development. This can potentially help to 
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expose the results of the CDSS even to patients. Our results show that a hybrid 

approach when a data-driven models are complimented with standard rule-based scales 

increases its acceptance and usefulness.  
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