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1. Introduction 

Natural language processing (NLP) is a method that originates in computer science and 

helps to find meaning in free-text data. NLP is well established for some health data, 

especially medical data (e.g., radiology and pathology clinical notes). In nursing, NLP 

have the potential to help with automated data extraction from nursing notes, enabling a 

diverse range of prediction and clinical decision support tasks. However, the extent of 

use of NLP in nursing remains unknown. We conducted a systematic review of literature 

to understand how NLP was applied on nursing data.  

2. Methods 

We searched PubMed and EMBASE to identify all potentially relevant abstracts related 

to NLP of nursing notes. We limited our results to articles in English language, without 

date constraints. Articles were included if they focused on development or 

implementation of NLP using data generated by nurses (e.g., inpatient or outpatient 

clinical notes). After excluding duplicates, 234 studies were selected for initial review. 

After article abstract review, 32 studies met all initial inclusion criteria. A total of 19 

articles were included in our final review after independent review by four expert 

reviewers.  For each article, we extracted data related to the study purpose, corpus (e.g., 

data source, number of narratives), patients (e.g., target population, number of distinct 

patients), NLP methods (e.g., methodology and/or tools used, performance metrics, 

standard terminologies used). 

3. Results 

The majority of the studies (70%) were published in the last four years (2015-19). Most 

of the studies were conducted using either inpatient (60%) or home health (15%) data. 

Five studies (25%) used a publically available database of clinical data called Medical 

Information Mart for Intensive Care (MIMIC). Most common standard vocabularies 

used were the Unified Medical Language System (UMLS, 50%) and Systematized 

Nomenclature of Medicine (SNOMED-CT, 40%). Nursing standard terminologies (e.g., 
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the International Classification for Nursing Practice, ICNP) were used only in one 

quarter of the studies. NLP was used to on a variety of topics with most common being: 

cardiac symptoms (n=4), mortality risk (n=4), falls risk (n=2). Predictive performance 

metrics (e.g., F-score, sensitivity and specificity) were reported for only 30% of the 

studies. The majority of studies were published in biomedical informatics journals. 

4. Discussion 

Although there was a significant increase in the number of published NLP studies in the 

recent years, the overall number of studies remains relatively small. Vast majority of 

studies were conducted with hospital or homecare data while little is known about NLP 

applicability to other settings, such as nursing homes or skilled nursing facilities. One 

publicly available datasets was frequently used; one in four NLP articles analyzed data 

from this database. Standard nursing terminologies were not generally applied in nursing 

NLP studies. NLP with nursing data was conducted on a variety of patient and nursing-

related factors, such as symptoms or prediction of patient risk. Only one-third of the 

studies reported NLP system performance which limits our understanding of NLP 

applicability in nursing. 

5. Conclusions 

This systematic review identified a growing trend of NLP with nursing data. However, 

only one-third of the studies reported NLP system performance and we encourage further 

NLP projects to use appropriate metrics (e.g., F-score) when reporting results. In addition, 

nursing NLP projects are encouraged to use exiting standard nursing terminologies to 

enable future scalability of the methods. Finally, more evidence is needed to understand 

the applicability of NLP beyond hospital or homecare setting. 
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