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Abstract. In this study, we investigate faecal microbiota composition, in an attempt 

to evaluate performance of classification algorithms in identifying Inflammatory 

Bowel Disease (IBD) and its two types: Crohn’s disease (CD) and ulcerative colitis 

(UC). From many investigated algorithms, a random forest (RF) classifier was 

selected for detailed evaluation in three-class (CD versus UC versus nonIBD) 

classification task and two binary (nonIBD versus IBD and CD versus UC) 

classification tasks. We dealt with class imbalance, performed extensive parameter 

search, dimensionality reduction and two-level classification. In three-class 

classification, our best model reaches F1 score of 91% in average, which confirms 

the strong connection of IBD and gastrointestinal microbiome. Among most 

important features in three-class classification are species Staphylococcus hominis, 

Porphyromonas endodontalis, Slackia piriformis and genus Bacteroidetes. 
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1. Introduction 

Inflammatory bowel disease (IBD) is an umbrella term used to describe chronic 

inflammation of digestive tract. It includes two types of disease: Crohn’s disease (CD) 

and ulcerative colitis (UC). They share many common features – diarrhea, bloody stools, 

weight loss, abdominal pain, fever, and fatigue, even though they affect different part of 

digestive tract. The exact cause of IBD is unknown, but some risk factors are known. It 

is a genetic disease, manifested under certain external influences. Research findings 

imply that microbiome has a fundamental role in patients with IBD, in all aspects: the 

development, progression, and treatment [1,2]. Machine learning (ML) algorithms 

applied on microbiome data have huge potential in uncovering patterns and aiding 

diagnosis of diseases including IBD. Early diagnosis is crucial in helping patients 

particularly in cases of diseases which are caused by microbial and environmental factors, 

since prevention in that case could be more efficient. 

In this study we investigate faecal microbiota composition, in an attempt to evaluate 

performance of classification algorithms in identifying IBD state. The aim is to predict 

patients state based on their metagenomic taxonomic profile in different time points. 

Since the IBD is a genetic disease, it is considered that the state remains unchanged 

during time. There are three possible states: CD, UC and nonIBD. Two of them (CD and 
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UC) represent unhealthy individuals or IBD. We perform three-class classification (CD 

versus UC versus nonIBD) to distinguish between the states. In addition, two binary 

classification tasks (nonIBD versus IBD and CD versus UC) are examined. Our approach 

differs in using only metagenomic data for prediction unlike other studies on the same 

database [3]. More on related work can be found in [4]. 

2. Data 

Resource for IBD data used in this paper is the Inflammatory Bowel Disease Multi’omics 

Database (IBDMDB, https://ibdmdb.org), part of the Integrative Human Microbiome 

Project [5]. For the classification task we use table of metagenomic taxonomic profiles 

and metadata, specifically sample and subject identifiers and true labels indicating 

clinical diagnosis. Dataset contains 429 samples from 27 healthy subjects, 750 samples 

from 65 CD subjects and 459 samples from 38 UC subjects. In total 1209 samples from 

103 IBD subjects. 

Microbes are grouped into 1479 operational taxonomic units (OTUs). Grouping of 

microorganisms is done in the following taxonomic levels: kingdom, phylum, class, 

order, family, genus, species and strains. Detailed description of the workflow used for 

producing the OTU table from the raw DNA sequences is available on the bioBakery 2.0 

GitHub repository https://github.com/biobakery/hmp2_workflows. The OTU table is 

transposed such that each row represents one sample and each column one feature, i.e. 

OTU. Values in the OTU table are given as relative abundances of particular OTU in 

some sample, relative to all reads from that sample assigned at the same taxonomic level. 

Sum by level in each sample is approximately 1 (due to the 

rounding errors). 

3. Methods 

3.1. Workflow 

The adopted approach consists of three main steps: (i) choosing of suitable ML model 

and forming of model pipeline; (ii) hyperparameters search; and (iii) training and 

evaluation of the best model. Further, mentioned steps are explained in details. The 

proposed workflow is presented in the Figure 1. It is worth noting that in the subsequent 

steps the care was taken with respect to which sample belongs to which subject along 

with its diagnosis. The model used is described in Section 3.2. Parameter searching was 

conducted using a group cross-validation approach. In the given problem, 

group cross-validation is used in order to ensure that all samples from one subject are 

either in the training set or in the validation set. Initial set of parameters was created at 

random, in order to narrow parameters searching space. Best performing parameters 

from the initial random search were used as a guidance for the more thorough grid search 

and thus further fine-tuned. Training was performed for each model in 100 iterations 

with 10-fold group cross-validation. This ensures insight into stability of performance 

and more comprehensive evaluation. 
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Figure 1. The workflow overview. 

 

Upon sample-wise binary classification, subjects are labelled as positive (in one case 

IBD, in other UC) if average decision probability of their samples that model outputted 

is above the certain threshold. The threshold was as well treated as a parameter and varied. 

In three-class classification, the decision becomes somewhat complicated. For that 

purpose, we employ two thresholds and tune them. Firstly, the average decision 

probability for each class is estimated by the model used. By summing two probabilities 

for IBD classes (CD and UC) and comparing with average probability for nonIBD class, 

we decide if the subject is an IBD (above th1) or not. Furthermore, if it is an IBD, we 

decide which type of disease subject might have by normalizing average probabilities for 

CD and UC on the IBD event and decide if the subject is UC or not (above th2). 

3.2. Model 

Data imbalance have an impact on the classification since some events becomes so rare 

that it is impossible for classifier to learn useful patterns about them. One possibility is 

to use class weighting if applicable with the learning algorithm. Another solution are 

widely adopted resampling techniques, which assume either down- and over- sampling. 

Downsampling reduces the number of samples in the majority class to balance the classes, 

while over-sampling increases the number of samples in the minority class. Apart from 

the random sampling with replacement, there is a popular method to over-sample 

minority class(es) the Synthetic Minority Oversampling Technique (SMOTE) [6].  

From many investigated algorithms, a Random Forest (RF) classifier [7] is selected 

for detailed evaluation in our classification tasks. RF randomizes decision tree through 

the features/samples sub-sampling (bootstrap) and groups trees to make a final decision 

on the basis of majority voting / averaging. In learning extremely imbalanced data, there 

is a significant probability that a bootstrap sample contains few or even none of the 

minority class, resulting in a tree with poor performance for predicting the minority class 

[8]. To overcome this issue, Chen et al. [8] proposed algorithm for balancing 

downsampled data in a bootstrap process called Balanced Random Forest (BRF). Using 

a random selection of features to split each node (tree growing), in both RF and BRF, 

each tree, gives an internal estimate which leads to feature importance [9]. This property 

of (B)RF will be very useful for microbiome analysis after classification since it can tell 

us which features most helped in making decision. 

In the dataset used classes are highly imbalanced, with IBD samples making up 74% 

of the dataset and almost two times more CD samples than UC. To approach class 

imbalance problem, three model pipelines were evaluated and compared: (1) class 

weighting of RF; (2) concatenation of SMOTE and RF; and (3) BRF. The feature 

selection was used in all scenarios to reduce data dimensionality. Experiments included 
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hand-picked taxa and/or selecting k best scored features (SKB), an (Univariate Feature 
Selection method based on ANOVA F-test [10]). 

The workflow is implemented in Python 3.0. For the ML algorithms scikit-learn 

0.24.2 library [11] is used in addition with imbalanced-learn 0.8.0 library [12] for the 

resampling and BRF. 

4. Results 

In order to find best suitable hyperparameters, the parameters search was repeated several 

times. It was noticed that the best parameters’ vicinity is similar for the same model type 

between the classification tasks. Also, change in classification performance as a function 

of the employed thresholds was noted. Table 1 contains best parameters configuration 

for each of the pipelines. Results of three-class classification is shown in the Figure 2. 

 Table 1. Parameters configuration for the three pipelines in three-class classification 

Parameters SKB_BRF SMOTE_SKB_RF SKB_RF 
RF max depth 15 3 3 

RF # of estimators 150 200 200 

RF class weight None None Balanced subsample 

SKB k 500 300 300 

th1 0.45 0.6 0.55 

th2 0.5 0.53 0.5 

 

a) b) 

 
Figure 2. Three-class classification results: (a) metric values in 100 repeats and (b) confusion matrix on patient 

level for the best model (SKB_BRF). 

 

Each model performance metric can be seen on the left (Figure 2a) and average 

number (in repeats) of well classified and misclassified patients for the pipeline 

containing BRF classifier on the right (Figure 2b). For the best evaluated model 

(SKB_BRF) all metrics are more or less similar (balanced accuracy is slightly worse in 

average) with an average score 91%. Other two model pipelines achieved significantly 

worse results with the weighted metrics slightly better than unweighted (macro). 

Additionally, importance of each feature for correct classification of the best 

performing model was calculated. The Bacteroidetes genus has shown to be the most 

important. The rest of the features are mainly on species taxonomic level, but also some 

strains show and two orders Coriobacteriales and Lactobacillales. Top 20 selected 
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features and their importance are presented in the Figure 3. Feature order is constant in 

repeats. Since OTU name is too large, we show only last taxonomic level of particular 

OTU. The first letter in the feature name indicates taxonomic level: o - order; g - genus; 

s - species and t - strain. 

 
Figure 3. Feature importance for the best model in three-class classification. 

 

In binary classification tasks, SKB_BRF model pipeline again significantly 

outperformed the rest. In CD versus UC case after 100 repeats, both average AUC and 

balanced accuracy reached 90% and average F1 score (unweighted and weighted) was 

91%. In nonIBD versus IBD case, these values were 92%, 91% (unweighted) and 94% 

(weighted), respectively. Confusion matrices are in the Figure 4. 

a) b) 

Figure 4. Confusion matrices for the best model (SKB_BRF) on patient level: (a) nonIBD versus IBD case 

and (b) CD versus UC case. 

Based on feature importance, the top 20 features differ slightly in these two cases. 

In nonIBD versus IBD case, the top features comprise mainly Alistipes and Bacteroides 

genus, with A. putredinisi as most important, and A. shahii and B. ovatus among most 

common species. In CD versus UC case, the highlighted features are Clostridium, 

Odoribacter, Dorea and Alistipes genus, with species C. clostridioforme, D. 
formicigenerans, and strain O. splanchnicus GCF_000190535. 
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5. Conclusion and discussion 

We addressed the classification problem in IBD dataset, taking in consideration the 

associated problems: class imbalance, number of samples per subject imbalance and an 

overall lack of data, in an attempt to avoid overfitting, a usual pitfall in applying ML 

algorithms. Moreover, we managed to reduce considerably large hypeparameters 

searching space emerged in dealing with all these problems. Among the evaluated 

classifiers, Balanced Random Forest showed the best performance and achieved the 

balance among different metrics. An additional advantage of the model used is the 

information on feature importance. However, to investigate the level of the OTUs 

(features) presence in different subject groups further analysis on a dataset is needed 

including the domain experts. The development of standardized ML pipeline would 

benefit from more data and an enhanced model explainability. 
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