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Abstract. The relevance of this study lies in improvement of machine learning 

models understanding. We present a method for interpreting clustering results and 

apply it to the case of clinical pathways modeling. This method is based on statistical 

inference and allows to get the description of the clusters, determining the influence 

of a particular feature on the difference between them. Based on the proposed 

approach, it is possible to determine the characteristic features for each cluster. 

Finally, we compare the method with the Bayesian inference explanation and with 

the interpretation of medical experts [1]. 
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1. Introduction 

Machine learning is at the center of numerous domains in science and innovation. More 

and more human lives depend on their decisions. In placing so much responsibility on 

algorithms, we need to have complete confidence in how they work. "The problem is 

that a single metric, such as classification accuracy, is an incomplete description of most 

real-world tasks." [2] Determining trust in individual predictions is an important problem 

when the model is used for decision-making. For instance, when using machine learning 

for medical diagnosis, predictions cannot be acted upon on blind faith, as the 

consequences may be catastrophic. 

The awareness of this problem has led to a rapid increase in the number of scientific 

papers on the interpretation of machine learning algorithms.  For example, Tim Miller 

[3] gives the following definition of interpretability: «Interpretability is the degree to 

which a human can understand the cause of a decision» or «Interpretability is the degree 

to which a human can consistently predict the model’s result». The higher the 

interpretability of a model, the easier it is for someone to comprehend why certain 

decisions were made. A model has better interpretability than another model if its 

decisions are easier to comprehend for a human than decisions from the second model. 
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There’s a big number of works dedicated to interpretation in the tasks of classification 

and regression [5-9]. However, only several works are on the topic of clustering results 

interpretation [10,11]. Paper [10] uses dendrograms and works only with hierarchical 

clustering and [11] suggests three-step clustering frameworks which work only for single 

feature clustering. The fundamental drawback of present methods is that they are model-

specific and can only be used to explain a single model. 

2. Materials and Methods 

This work develops the ideas of interpreting clustering results approach described in 

articles [1, 4]. This article uses Bayesian inference for the post-hoc interpretation of 

clustering provided by the K-Means algorithm. Differences and similarities between 

clusters are investigated by sampling and comparing the posterior distribution of features. 

In the presented work, we propose an alternative way to compare and explain 

clusters based on statistical inference. As an input for interpretation, we get the matrix 

 with  observations and  features and corresponding cluster labels – , that 

we get from clustering modeling using K-means. In order to describe the clusters, we 

compare the distributions of m features between clusters by statistical hypotheses testing. 

See the pseudocode of the procedure below. 

Various statistical tests exist for formally testing statistical hypotheses. To select the 

proper test, the algorithm divides the data into categorical and continuous. If the data is 

continuous, then the algorithm checks if the data obeys normal distribution law. After 

that, a user has to select whether the compared groups are independent and how many 

groups are compared. Based on all the above, the algorithm decides which test to use to 

interpret continuous data (see Figures 1, 2). 

Let Continuous be a set of continuous features and Categorical be a set of categorical 

features, where  – the number of features. 

 
FOR each feature : 

         IF   Continuous THEN 

1. Check whether   obeys the normal distribution law 

IF  is normally distributed THEN 

1. Asking the user if the groups are dependent (YES/NO) 

IF answer = YES THEN 

     IF groups > 2 THEN 

1. Apply ANOVA for Repeated Observations 

                                    ELSE 

1. Apply Student’s t-test for paired samples 

                              ELSE 

1. Asking the user if a comparison with a given value (YES/NO) 

                                       IF answer = YES THEN 

1. INPUT value 

2. Apply Z-test 

                                        ELSE 

                IF groups > 2 THEN 

1. Apply One-way ANOVA 

                                              ELSE 

1. Apply Student’s t-test for independent samples 

 

Figure 1. Pseudocode for comparing procedure using normally-distributed continuous features. 
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Similarly, the Figures 1-2 show the algorithm if the features have an abnormal 

distribution or are categorical. 

 

Figure 2. An interpretation algorithm based on statistical inference for not normally distributed continuous 

variables 

 

If the data is categorical, then the algorithm only needs to check whether the 

compared groups are independent and how many groups are compared. Based on this, it 

is decided which test to use to interpret categorical data (see Figure 3). After the test is 

selected and applied to the data, the algorithm displays in a form understandable for a 

medical expert, which features have a significant effect on the difference between the 

compared groups, and also indicates the features characteristic for each group. We will 

talk in more detail about what the data that the algorithm outputs and their interpretations 

mean in the next chapter. 

 

Figure 3. An interpretation algorithm based on statistical inference for categorical variables 
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3. Results and Discussion 

The dataset consists of 3312 observations. By observation, we understand a clinical 

episode, a single hospitalization of a patient with a Diagnosis of Acute Coronary 

Syndrome. The initial feature set included the clinical pathways - a sequence of 

departments a patient passes during hospitalization. In order to improve the interpretation, 

the feature set was extended with additional information from the electronic health 

records. All features are boolean. For instance, surgery, death outcome, stroke, stenting, 

coronarography, rehabilitation, clinical death, cardiogenic shock, rehospitalization. 

The data presented were interpreted using Bayesian inference and a medical expert 

in [1]. Next, we compare these results with the results obtained by the algorithm 

described in the previous chapter.  As a comparison metric, we use the percent of a 

coincidence for each cluster, calculated as a proportion of a number of features in the 

intersection to the number of features provided by the doctor or Bayesian inference. The 

main and most interesting results of the experiment are presented in Table 1. 

 

Table 1 The results of the statistical inference interpretation algorithm and its percentage of agreement with 

the results of the Bayesian interpretation algorithm and the results of the interpretation of the medical expert. 

Cluster Num 
Obser-
vations 

Bayesian inference  
(BI) 

Statistical inference Doctor’s 
Interpretation 

(DI) 

% of 
explanation 
match with 

BI 

% of 
expla-
nation 

match 
with DI 

1 116 'icu', 'rehospitalization', 
'stenting', 'nevrology_dep', 

'delayed_surgery', 
'additional_surgeries' 

'age', 
'minutes_before_first_opera

tion', 'stenting', 
'serious_condition', 'icu', 

'revascularization', 
'rehospitalization', 
'nevrology_dep' 

'rehabilitation',  
'rehospitalization',  

'additional 
surgeries' 

66.7 66.7 

2 821 'outcome better', 'stenting', 

'stroke', 'no surgery' 

'num_operations', 'age', 

'minutes_before_first_opera
tion', 'no_surgery', 'outcome 
better', 'rehospitalization', 

'revascularization' 

'optimal path',  

'transfer_from_stati
onar',  

'rehospitalization',  

'revascularization' 

25 50 

3 460 'outcome death', 

'transfer_from_inhospital, 
'no surgery’ 

'outcome_death', 

'revascularization', 
'no_surgery' 

'outcome death', 

'comorbidity',  
'coronarography',  

'no surgery,  
'revascularization' 

66.7 60 

4 193 'cardiogenic shock', 
'coronarography', 

'rehospitalization', 
'wheelchair_transporting', 
'nevrology_dep_rehosp', 

'vessel_surgery_dep', 
'more_surgeries 

'num_operations', 
'minutes_before_first_opera

tion', 'no_surgery' 

'no surgery' 0 100 

9 287 'outcome death', 
'cardiogenicshock', 

'seriouscondition', 
'vessel_surgery_dep', 

'transfer_from_stationar', 

'no_surgery' 

'age', 'operation', 
'coronarography', 

'clinical_death', 
'vessel_surgery_dep', 

'no_surgery' 

'outcome death',  
'coronarography',  

'no_surgery 

50 100 

10 203 'outcome better', 
'coronarography', 
'urgent_operation', 

'rehabilitation', 'cardio_dep', 
'vessel_surgery_small', 

'optimal_path' 

'outcome better', 
'coronarography', 

'rehabilitation', 'cardio_dep', 

'vessel_surgery_small' 

'rehabilitation' 71.4 100 

 

Cluster 1. Both methods found that patients in the cluster were more likely to be re-

hospitalized and undergo additional surgery during treatment. However, the algorithm, 
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based on statistical inference, determined that these patients needed additional 

rehabilitation. All of the above was also confirmed by a medical expert. 

Cluster 2. Both algorithms determine a positive outcome for patients without 

surgery. But the doctor claims that patients from this cluster follow the optimal clinical 

path, which is not supported by algorithms in any way. 

Cluster 3. Both algorithms establish death without surgery as the characteristic 

outcome for this group of patients. There were also no significant differences found in 

other characteristics suggested by the medical expert. 

Cluster 4. An algorithm based on statistical inference revealed the features 

characteristic of the cluster - the presence or absence of surgical intervention. An 

algorithm based on Bayesian inference has shown that patients can have more than one 

operation. According to the doctor, patients here tend to get conservative treatment, 

without surgery. 

Cluster 5. Both algorithms identified patients with complications characteristic of 

this cluster, as well as a favorable outcome for them, which emphasizes the algorithm 

based on Bayesian inference, indicating the sign of the optimal clinical pathway. In this 

group, the surgeon admits patients with complications and the necessity of additional 

post-surgery recovery treatment in other departments. 

Cluster 6. Algorithms have revealed that stenting surgery is typical for patients, but 

for some reason, it is postponed. The medical expert mentions a complex diagnostics 

process for patients in this group. 

Cluster 7. Both approaches in interpretation revealed multiple complications and the 

death of patients. However, unlike the medical expert and Bayesian inference, the 

algorithm based on statistical inference did not reveal that postponed operations are a 

characteristic feature of this group. 

Cluster 8. The main diagnosis for both interpretations is stroke, but the algorithm 

based on statistical inference also indicates some complications for patients in the form 

of cardiac shock. All of the above was also confirmed by a medical expert. 

Cluster 9. Algorithms indicate problems with blood vessels in patients, as well as a 

possible death. 

Cluster 10. Both approaches determined that patients in this group are undergoing 

rehabilitation, therefore, they are likely to have a favorable outcome. 

4. Conclusion 

In conclusion, we would like to say that the goal of the study has been achieved: an 

approach has been developed to interpret the clustering results using statistical inference. 

This method allows you to get an idea of the clusters by determining the influence of a 

particular feature on the difference between them, on the basis of which it is possible to 

determine the characteristic features for each cluster.  

When comparing the two approaches, no significant contradictions were found in 

the interpretation. In some cases, both algorithms are also capable of complementing 

each other's work, which is confirmed on the basis of the conclusions of a medical expert. 

These are the primary results of our experiments, but we can already talk about a 

fairly good accuracy and availability of interpretation, so we are confident that this work 

will serve well in the application of machine learning models in clinical practice and 

other fields. 
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