
Predicting the Aortic Aneurysm 

Postoperative Risks Based on Russian 

Integrated Data 

Iuliia LENIVTCEVAa,1, Sofia GRECHISHCHEVAa, Georgy KOPANITSAa , Dmitry 

PANFILOV 
b and Boris KOZLOVb 

a
 ITMO University, 49 Kronverskiy prospect, 197101, Saint Petersburg, Russia 

b
 Cardiology Research Institute, Tomsk National Research Medical Center of the 

Russian Academy of Science, Tomsk, Russia 

Abstract. This article describes the results of feature extraction from unstructured 

medical records and prediction of postoperative complications for patients with 

thoracic aortic aneurysm operations using machine learning algorithms. The 

datasets from two different medical centers were integrated. Seventy-two features 

were extracted from Russian unstructured medical records. We formulated 8 target 

features: Mortality, Temporary neurological deficit (TND), Permanent neurological 

deficit (PND), Prolonged (> 7 days) lung ventilation (LV), Renal replacement 

therapy (RRT), Bleeding, Myocardial infarction (MI), Multiple organ failure (MOF). 

XGBoost showed the best performance for most target variables (F-measure 0.74-

0.95) which is comparable to recent results in cardiovascular postoperative risks 

prediction. 
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1. Introduction 

Thoracic aortic aneurysm (TAA) is a dilatation of the aorta to more than 150% of normal 

diameter [1] in ascending, descending aorta, or aortic arch. TAA has a 1-year mortality 

rate up to 75% [2]. The causes of death include not only aortic rupture, but also such 

complications as myocardial infarction, renal insufficiency, bleeding, stroke, etc. [3]. 

These risks are often compounded by several cardiovascular comorbidities which 

complicates the decision making. The prediction of complications is one of the ways to 

reduce patient’s risks. Machine-learning (ML) offers an approach for risks prediction to 

address patient’s state [4]. It uses routine clinical data to create risks prediction models. 

The overview of current cardiovascular postoperative models for risks prediction is 

shown in Table 1. About 80% essential medical data are stored in free-text medical 

records [5] which limits the number of data available and complicates the prediction 

models development.   
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The aim of this work is to develop a model for postoperative risks prediction for patients 

with TAA based on data from two Russian medical institutions concerning both 

structured data and free-text medical records.  

 

Table 1. Recent algorithms, estimations, and data 

Study Algorithm AUC-
ROC 

Data Target 

Lee, 2018 [6] XGBoost 0.78 
Open heart and TAA 

surgery 
Acute kidney injury 

Zhong, 2021 [7] XGBoost 0.93 

Coronary artery bypass 

surgery, aortic valve 

replacement and other 

heart surgeries 

30-day mortality, septic 

shock, liver dysfunction, 

and thrombocytopenia 

Allyn, 2017 [8] 
Model 

ensemble 
0.78 Elective heart surgery Postoperative mortality 

Fernandes, 2021 [9] XGBoost 0.88 
Intraoperative open 

heart surgery data 
Postoperative mortality 

Coulson, 2020 [10] 
Logistic 

regression 

0.78–

0.85 
Open heart surgery Acute kidney injury 

2. Method 

2.1. Data and Features 

The predictive model was developed based on two datasets. The first dataset includes 

structured data from Tomsk National Medical Research Center of the Russian Academy 

of Sciences and the second dataset includes unstructured medical records from Almazov 

National Medical Research Center (St. Petersburg, Russia). Tomsk dataset contains 97 

structured records for 97 patients with data on aortic operations. Almazov National 

Medical Research Center dataset contains 56 929 text documents (2008 – 2019) for 343 

TAA operations and 319 patients. We formulated 8 target features: Mortality, Temporary 

neurological deficit (TND), Permanent neurological deficit (PND), Prolonged (> 7 days) 

lung ventilation (LV), Renal replacement therapy (RRT), Bleeding, Myocardial 

infarction (MI), Multiple organ failure (MOF). In total, 63 input features were formulated 

for risks prediction. We organized these features in groups: anthropometric information 

(6 features), concomitant diseases (8 features), laboratory tests (5 features), coronary 

angiogram (4 features), echocardiography (8 features), computed tomography (14 

features), intraoperative information (15 features), combined surgeries (3 features).  

2.2. Feature Extraction  

We extracted input and target features from Almazov National Medical Research Center 

text records; the Tomsk National Medical Research Center of the Russian Academy of 

Sciences data were already structured. All the data were anonymized by the source 

medical institutions. Textual data preprocessing included several steps: data cleaning, 

lemmatization, stop-words and rare words removal, sentences segmentation, POS-

tagging, negation detection and removal, tokenization, and vectorization (TF-IDF). To 

realize these steps, we used the following Python packages: pymorphy2 (to work with 

Russian language), NLTK, spaCy. Data filtering was organized both by keywords search 

(for each feature) and by applying shallow algorithms: Support Vector Machine (SVM), 
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Random Forest (RF), Logistic Regression (LR), and k-nearest neighbors (k-NN). Time 

frames were considered for data filtering. For instance, preoperative features were 

extracted from the documents before the operation. The features are extracted using the 

list of patterns and rules. Feature extraction accuracy was evaluated on 200 manually 

processed textual records. After the feature extraction step, two datasets were integrated 

based on feature names.  

2.3. Predictive Model 

Firstly, data were prepared for modelling: normalized in an interval [0,1], processed 

strong-correlated features (Pearson correlation), removed features with more than 60% 

gaps, otherwise missing values were imputed using k-NN method from sklearn package. 

Secondly, four algorithms were used for feature selection: univariate feature selection 

based on chi-squares, recursive feature elimination, decision tree ensemble and Lasso 

regression. Each algorithm selects 10 features and direct them to majority voting. From 

8 to 11 features are selected for each target. Eight models were built to predict eight 

targets and a set of selected features was created for each target. Some target features can 

also be used as input features for other targets. We tested three algorithms for modelling: 

1) LR; 2) RF; 3) XGBoost. SMOTE was used for integrated dataset balancing. The 

results are estimated by AUC-ROC, F-measure, and Accuracy scores, using 20-fold 

cross-validation. We also compared the performance of the developed models before (97 

operations from Tomsk dataset) and after (440 operations, integrated dataset) extending 

structured dataset with extracted features. 

3. Results 

3.1. Data Description 

Table 2 shows the percentage of missing values in extracted data. 

 

Table 2. The percentage of missing values (only features that have missing values) 

Feature Missing, % Feature Missing, % 
Circulatory arrest time 69.6 Cardioplegic arrest time  51.6 

Cardiopulmonary bypass time  44.0 Postoperative creatinine 17.9 

Aortic arch diameter 12.3 Sinuses of Valsalva diameter 12.3 

Surgery duration 10.9 Blood loss  6.2 

Height 4.7 Body mass index 4.7 

Body surface area 4.7 Ascending aorta diameter 4.1 

Left ventricle ejection fraction 3.8 Postoperative hematocrit 3.5 

Weight 3.2 Age 2.9 

3.2. Predictive Modelling Results 

XGBoost strategy in combination with SMOTE yields the best results for most targets. 

Table 3 represents the best results for each target. 
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Table 3. The results for predictive modelling 

Target Strategy Accuracy AUC-ROC F-measure 
Mortality XGBoost + SMOTE 0.915 0.928 0.872 

TND XGBoost + SMOTE 0.799 0.846 0.744 

PND XGBoost + SMOTE 0.850 0.932 0.845 

Prolonged LV XGBoost + SMOTE 0.927 0.988 0.948 

RRT XGBoost + SMOTE 0.975 0.986 0.950 

Bleeding RF + SMOTE 0.925 0.987 0.933 

MI RF + SMOTE 0.957 0.986 0.953 

MOF XGBoost + SMOTE 0.903 0.941 0.885 

 

The comparison results before and after structuring are represented in Table 4. 

 

Table 4. Comparing the models’ performance before and after structuring textual data 

Target  AUC-ROC 
(before) 

F-measure 
(before) 

AUC-ROC 
(after) 

F-measure 
(after) 

Mortality 0.845 0.928 0.852 0.872 
TND 0.828 0.846 0.839 0.744 
PND 0.929 0.932 0.931 0.845 

Prolonged LV 0.911 0.988 0.909 0.948 
RRT 0.771 0.986 0.784 0.950 

Bleeding 0.893 0.987 0.889 0.933 
MI 0.833 0.987 0.821 0.953 

MOF 0.835 0.941 0.816 0.885 

 

Table 5 shows top-5 most important input features for target prediction. 

 

Table 5. Most important features for targets 

Target  Top-5 important features Target  Top-5 important features 

Mortality 

1) MOF 

2) RRT 

3) Fresh frozen plasma, units 

4) Deep hypothermia 

5) Age 

 

TND 

1) Entry site of aortic dissection at the 

sinotubular junction 

2) Descending aortic dissection 

3) Left internal carotid artery stenosis 

(50-75%) 

4) Resternotomy for bleeding 

5) Ascending aortic dissection 

    

PND 

1) Diameter of sinus of Valsalva 

2) Entry site of aortic dissection at 

sinotubular junction 

3) Diameter of aortic arch 

4) Prolonged LV 

5) Right coronary artery stenosis  

Prolon

ged LV 

1) Red blood cells, units 

2) Fresh frozen plasma, units 

3) Bleeding 

4) Left internal carotid artery stenosis 

(<50%) 

5) RRT 

    

RRT 

1) MOF 

2) Postoperative creatinine 

3) Extension of aortic dissection down 

to iliac and/or femoral arteries  

4) Fresh frozen plasma, units 

5) Prolonged LV 

Bleedi

ng 

1) Previous MI 

2) Aortic valve replacement 

3) Height 

4) Fresh frozen plasma, units 

5) Retrograde dissection 

    

MI 

 

1) Left coronary artery stenosis (>75%) 

2) Red blood cells, units 

3) Drainage blood loss 

4) Dissection of abdominal aorta  

5) Left coronary artery stenosis (<50%) 

MOF 

1) RRT 

2) Right coronary artery stenosis  

3) Fresh frozen plasma, units 

4) Red blood cells, units 

5)Previous cerebrovascular accident  
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4. Discussion 

This work is dedicated to the development of the predictive model based on the 

integrated medical data. For this purpose, we used two datasets from real medical 

institutions which contain heterogeneous data for patients with TAA operations. For 

integration purposes the textual data were processed to extract essential features. The 

extracted features were validated based on the accuracy score on the test sample. We 

dropped 6 features due to the differences in data formats storage, diagnostic methods for 

different institutions and due to the missing values. For instance, circulatory arrest time 

is a feature that characterizes duration of circulatory arrest in minutes, however, for 

Almazov National Medical Research Center data, it is often possible to extract 

information about circulatory arrest only as a binary feature – if a procedure was done or 

not. As a result of the exploratory data analysis some features such as weight (correlated 

with two other features), circulatory arrest time, cardioplegic arrest time, and 

cardiopulmonary bypass time were removed due to the large number of missing values 

(see Table 2) as the use of imputing techniques can affect the quality of the predictive 

model. To develop a predictive model three machine-learning algorithms were used: 1) 

logistic regression; 2) XGBoost; 3) random forest. XGBoost algorithm in combination 

with SMOTE showed the best results for most targets (see Table 3). It also shows 

comparable results to other studies in predicting postoperative cardiovascular 

complications (Table 1). The developed predictive model has a high potential for the 

thoracic aortic surgery risks prediction. Although it should be noted that from the clinical 

point of view the impact of several parameters in the predictive model is obscure. 

However, number of them has logical explanation. For example, direct relation of the 

aortic diameter at the sinuses of Valsalva to temporal neurological deficit is unclear. To 

find the answer one need to solve a logical chain. Large aortic root is an indication for 

its replacement. Naturally, it prolongs cardiopulmonary bypass time and, in turn, 

increases neurological deficit risks.  

Our study has some limitations. However, we integrated data from several datasets, 

the number of patients and operations is relatively small and needs to be extended. We 

also faced with the imbalance problem during the study, which is usual for medical data 

[11]. In such situations machine-learning algorithms tend to classify the data into 

predominant class. To address this problem, we used SMOTE for data balancing and F-

measure as a metric which is less sensitive to data imbalance. However, the work with 

imbalanced medical datasets is still an issue. One more limitation relates to the data 

losses during the integration process. There is a need not only to compare and map the 

logical data structures and contents, but also diagnostic methods and treatment 

approaches in different institutions as it may influence the data collected and stored. 

However, despite all the mentioned limitations the study showed that data structuring 

and integration helps to extend the dataset and improve the quality of the predictive 

model.  

5. Conclusion 

In this study we developed a model for postoperative risks prediction for patients with 

TAA based on data from two Russian medical institutions concerning both structured 

data and free-text medical records. Our study showed that heterogeneous data integration 

improves the performance of predictive model. Future studies may address current 
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limitations of the study such as relevant synthetic patients’ generation and model 

validation in a medical practice. 
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