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Abstract.  openMNGlab is an open-source software framework for data analysis, 
tailored for the specific needs of microneurography – a type of electrophysiological 
technique particularly important for research on peripheral neural fibers coding. 
Currently, openMNGlab loads data from Spike2 and Dapsys, which are two major 
data acquisition solutions. By building on top of the Neo software, openMNGlab 
can be easily extended to handle the most common electrophysiological data formats. 
Furthermore, it provides methods for data visualization, fiber tracking, and a 
modular feature database to extract features for data analysis and machine learning. 
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1. Introduction 

Microneurography (MNG) is a domain of electrophysiology investigating the responses 
of peripheral nerve fibers in awake humans using needle electrodes inserted into a 
peripheral nerve. MNG studies are crucial for understanding sensory coding and helping 
patients with neurological conditions, such as neuropathic pain [1]. Before the analysis 
of the neural code of the very thin C-fibers, which are responsible for signaling pain, itch 
and temperature, is possible, individual nerve fiber signals are manually identified, 
aligned to an individual nerve fiber and annotated in the recording with a semi-automatic 
“marking” technique [1] based on the activity-related slowing of their conduction 
velocity. 

Fully automatic solutions for detection and sorting of action potentials to enable 
tracking of responses from a single fiber over time, are necessary to improve the 
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efficiency of data analysis. However, before the methodologies known from other 
domains of computational neuroscience (e.g., spike clustering) can be applied, there is a 
need to develop software solutions for loading, processing, and storing of MNG data. 

Furthermore, scientific research relies on cooperation between different work groups. 
Exchange of data but also practices and software for its analysis leads to new findings. 
However, the exchange of data and especially source code for analysis is in practice often 
impeded by differences in the used hardware, software, and study protocols. Therefore, 
to overcome these difficulties, we developed a software framework called openMNGlab. 
The development of openMNGlab was guided by the FAIR (findability, accessibility, 
interoperability, reusability) principles [2]. Our Python-based framework has a modular 
design and uses the Neo package [3] as it provides efficient data structures for 
electrophysiological data. Moreover, by using the Neo library, we try to ensure 
compatibility with open-source electrophysiology software such as SpykeViewer [4] or 
Elephant [5].  

The current version of openMNGlab already provides fundamental methods for 
MNG data analysis, with a focus on machine learning that we believe might lead to novel 
neuroscientific insight through using the full potential of large data collections. 

2. State of the Art 

Currently, a variety of different recording software for MNG exists, each with their own 
strengths, weaknesses, and file formats. Further adding to the problem, some software 
products may be discontined. In the absence of software that can read these specific file 
formats, this would lead to a loss of data. 

The electrophysiology community is developing solutions for these problems. The 
Neo software package [3] is a powerful Python library to load electrophysiological data 
from different file formats and organize the data in memory. However, it is not specific 
to the requirements of MNG data analysis. To the best of our knowledge, there is no 
other software which aims at providing loading functionality for common file formats 
used in MNG while also being specifically tailored towards MNG-specific data analysis. 

3. Concept 

We aim to provide a software framework for analysis of data which has been generated 
in MNG experiments. To enable  data analysis, the framework has to offer functionality 
for loading data from different sources, e.g., MNG data acquisition tools. Furthermore, 
the data should be available in a unified format after loading, so that the source code for 
data analysis is independent of the data origin and file format.  

Apart from that, our software must be tailored to MNG by providing methods, 
classes and visualizations, which are specific to MNG research. This includes modeling 
of MNG-specific entities such as action potentials, electrical or mechanical stimulation, 
or nerve fibers attributes. 
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4. Implementation 

We implemented openMNGlab in the Python programming language. The software 
framework is an open-source project and publicly available3. As our software framework 
is implemented in Python, it will run on different operating systems and we can resort to 
a plethora of existing software packages.  

4.1.  Input and Output 

We build upon the Neo package for processing of electrophysiological data which 
provides classes for importing electrophysiology data from different file formats. File 
formats supported by Neo include, e.g., Spike2 and OpenEphys formats which are 
particularly relevant for MNG data analysis in our associated research groups. In a first 
step, our framework supports the import of Spike2 recording files using the 
corresponding Neo importers. Import methods for other file formats can be added at any 
time if necessary. Given Neo’s IO class for a certain file format, implementation of a 
simple method which performs minor pre-processing steps such as proper annotation of 
the Neo objects, suffices (see Figure 1). 

Furthermore, our software can import Dapsys [6] recordings, albeit not in the 
Dapsys-specific .dps format as we have no information about the structure of this format. 
Instead, recordings must be exported to comma separated value (csv) files using the 
Dapsys software. Particularly on German operating systems due to incompatibilities with 
the local number format, additional pre-processing is necessary so that the csv-files are 
valid. The (fixed) files are then read by an import method and a Neo-segment with 
corresponding channel objects is generated. 

 
Figure 1. UML class diagram of the openMNGlab classes for loading and storing of recordings. The Spike2 
importer uses Neo’s Spike2IO to load the raw format as a Neo segment and performs further pre-processing 
steps. The Dapsys importer directly instantiates a Neo segment with the correct attributes. The resulting Neo 
segments are wrapped by the MNG recording class, which is used as an abstraction layer for the data analysis 
methods. The recording IO manages reading and writing of recordings in the HDF5 format, and transparently 

uses Neo’s NixIO class. 

After a recording has been loaded into memory as a Neo model, it can be 
manipulated and analyzed. If any changes should be made permanent, the Neo model 
can be written to the disk in the HDF5 format. Such files can then again be loaded into 
memory. HDF5 is a standardized format for storage of scientific data and may be 
supported for many years. Therefore, we recommend that all recording files should be 
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loaded once and stored to HDF5, to ensure long-term readability and abstraction from 
the original formats. 

4.1.1. Transformation to MNG-specific format 

To facilitate analysis of MNG recordings, we provide a more specific data format which 
transparently uses Neo for efficient data storage and access. Data which has been read 
using Neo’s IO classes typically needs to be further processed and made conformant with 
our unified data representation for MNG. In case of Spike2 this includes, e.g., splitting 
event channels by their different event markers into separate event channels. The 
required preprocessing depends strongly on the specifics of the loaded file format. 

Most importantly, all channels must be annotated with a unique channel identifier 
and a channel type. Possible channel types include electrical stimulation channels, 
mechanical stimulation which is used to identify the receptive fields in MNG, or raw 
signals. Such semantic information is not represented in the Neo data structure but is 
important for MNG data analysis. Therefore, we emphasize these differences in our 
MNG-specific data representation. 

To facilitate access to the channels by their assigned ID, all import methods are 
required to maintain an ID map. This ID map links the channel names as displayed in, 
e.g., Spike2 to the identifiers assigned by the import method. 

 
Figure 2. Simplified class diagram of openMNGlab’s wrapper classes. We omit wrappers for mechanical 
stimulation, additional electrical stimulation etc. here. The wrapper classes provide simple access to single 

entities or events of an MNG recording. Action potential wrappers can also be used for accessing the feature 
database (see section 4.3). New wrapper classes for more specific types of events and entities can and will be 

added. 

4.2. MNG-specific Data Format and Classes 

We provide wrapper classes for the Neo models (see Figure 2) to enable easy access to 
the relevant entities in MNG data analysis. There are wrapper classes for the recording 
itself, for action potentials, electrical stimulation pulses, as well as other relevant entities 
and events. The wrapper classes are instantiated when the MNG recording’s entity lists 
are accessed. Upon creation, these classes transparently use the annotations added to the 
Neo objects during data import. Consequently, import methods for different file formats 
must always store this information in the same attributes and fields. The main advantage 
is that the wrapper classes contain semantically relevant and specific information for, 
e.g., electrical stimulation in the context of MNG. Therefore, we add another abstraction 
layer from the Neo objects and facilitate scientific programming and programming 
cooperation in the context of MNG. On those occasions where Neo’s structures are 
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beneficial, they can of course still be accessed since they exist in parallel to the MNG-

specific data structure. 

Apart from wrapper classes for Neo objects, we also provide classes and methods 

which in turn build upon our data structure. For example, we model action potential 

tracks (see Figure 3) as defined by Turnquist and Namer [7]. Data analysis code can use 

these classes and methods which facilitates data analysis even more, by reducing the 

required programming effort. 

4.3. Feature Extraction 

We provide a modular programming interface for feature extraction, mainly to enable 

machine learning and regression analysis. At the center of our implementation is the 

feature database to which new feature extractors can be registered. New feature 

extractors must implement the provided interface. Then, feature expressions for each 

action potential are calculated using the methods defined by the feature extractors. 

Feature expressions for individual action potentials can be retrieved from the feature 

database by providing instances of action potential wrappers or indices. As some features 

may be computationally expensive, the feature database can be written to a permanent 

storage as YAML files and numpy objects. 

Currently, we have implemented some simple features such as the latency of an 

action potential measured from the regular electrical stimulation, but also more complex 

ones like a sliding window that counts the number of action potentials in distinct time 

intervals preceding an action potential. We allow different data types including floats 

and multidimensional arrays. 

 

  

Figure 3. Example of a waterfall plot created from a Spike2 recording on animal data. The stars indicate 

electrical stimulation at constant time intervals along the left y-axis. In x-direction, the raw signal is plotted 

and the amplitude is shown on the right y-axis. The onset and offset of each action potential as registered by 

Spike2 is marked using triangles. Finally, the plot includes the AP track which has been identified by the 

correlation-based tracking algorithm as proposed by Turnquist et al. [7]. 

4.4. Visualizations 

We provide methods for visualizations that are commonly needed in MNG data analysis. 

For example, waterfall plots aim at visualizing the latency between an electrical stimulus 

and an action potential that was triggered by this electrical stimulus. The electrical 

stimuli are plotted along the y-axis, with the post-stimulus signal being plotted along the 
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x-axis (see Figure 3). Such a plot can conveniently be generated from our internal data 
representation. Furthermore, usage of modern plotting libraries such as plotly allows 
interaction with the plots, including zooming and panning. 

5. Lessons Learned / Discussion 

We have found that using the Neo package for file import and internal representation of 
MNG data is very efficient. Neo’s existing import methods are convenient from a 
software development perspective. As Neo offers import functionality for Spike2 files 
and other file formats which are used to record MNG data, usage of the Neo package 
avoids additional programming work. Still, as Neo cannot read Dapsys files we had to 
implement the import of Dapsys files using a workaround via csv-files. The ability to 
import Spike2 and Dapsys files into a unified representation allows us to apply 
algorithms for data analysis and visualization without the need to make adaptions to the 
source code. By adding import methods for further formats, this advantage might become 
even more apparent. 

In the long term, we aim to import Dapsys dps-files directly. This can be realized 
either by contributing a Dapsys IO class to the Neo project or by providing our own 
solution within openMNGlab. 

Furthermore, we found that providing more specific wrapper classes for MNG data 
analysis facilitates working with the Neo representations in an MNG context. These 
wrapper classes convey semantics as they correspond to actual MNG entities. The 
modular structure of openMNGlab allows for the addition of new wrapper classes if 
necessary. Thereby, development of algorithms and analysis pipelines in an MNG 
context becomes more efficient because relevant events and entities can be directly and 
conveniently accessed. 

Finally, the design of our modular feature database enables for fast and easy addition 
of new features and feature extraction methods for machine learning in MNG. Some 
features have already been implemented [8], and new features will be added depending 
on future machine learning tasks. 

In the next step, we will implement an improved fiber tracking algorithm for MNG 
data, based on track correlation as described by Turnquist et al.  [7]. The algorithm will 
be extended with wavelet filters and semi-supervised learning approaches.  

Concurrently, we are working on metadata storage and sharing in the context of 
MNG, using the odML metadata markup language [9]. In the long term, accessing 
metadata from the framework to retrieve information about a recording may allow for 
further automatization of MNG data analysis pipelines.  

6. Conclusion 

With openMNGlab, we propose a software framework which allows researchers to 
import microneurographic recordings of different formats so that they can perform data 
analysis and produce visualizations. One main advantage is that data analysts do not need 
to care about the specifics of the used file formats once an import method for this format 
exists within the framework. Furthermore, the unified data structure allows for easier 
coding collaboration and data exchange between multiple work groups. For data import 
and its internal representation, our software framework builds upon the Neo package for 
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electrophysiological data. As Neo does not support the Dapsys data acquisition software 
yet, we provide our own import methods. To facilitate data analysis in an MNG context, 
we introduce MNG semantics by extending the Neo data structure with wrappers for 
MNG-specific entities. On top of that, we provide methods for MNG data analysis, as 
well as methods for data visualization. With our feature database implementation, we 
also lay the foundation for machine learning in the context of MNG. 
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