
Automated Creation of Expert Systems

with the InteKRator Toolbox

Daan APELDOORNa,b,1 and Torsten PANHOLZER

a
a

 Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI),

University Medical Center of the Johannes Gutenberg University Mainz, Germany
b

 Z Quadrat GmbH Mainz, Germany

Abstract. Expert systems have a long tradition in both medical informatics and
artificial intelligence research. Traditionally, such systems are created by
implementing knowledge provided by experts in a system that can be queried for
answers. To automatically generate such knowledge directly from data, the
lightweight InteKRator toolbox will be introduced here, which combines knowledge
representation and machine learning approaches. The learned knowledge is
represented in the form of rules with exceptions that can be inspected and that are
easily comprehensible. An inference module allows for the efficient answering of
queries, while at the same time offering the possibility of providing explanations for
the inference results. The learned knowledge can be revised manually or
automatically with new evidence after learning.

Keywords. Expert system, knowledge representation, machine learning

1. Introduction

1.1. Background

In recent years, artificial intelligence (AI) experienced a boost in popularity. Especially

machine learning, as a subfield of AI, raised a lot of attraction. While many machine

learning approaches deal with numerical methods to learn from data (e.g., for

classification or image recognition), the traditional discipline of expert systems is related

to knowledge representation, a subfield of AI, where knowledge is modeled by rules and

logic-based approaches.

Expert systems have a long tradition, especially in the medical sector (e.g., MYCIN

[17]), and are used to represent and manage the knowledge of experts in a way that allows

to query it for answers. The knowledge usually exists in an explicit form and thereby can

provide transparency (to some degree), which can help to understand the inference

results.

Machine learning approaches (like neural networks) have shown impressing results,

e.g., in image recognition tasks. However, such approaches are often known for lacking

transparency and explainability of the results, since the learned knowledge is implicitly

contained in a huge numerical representation (e.g., millions of weights in a neural

network).

1 Corresponding author, daan.apeldoorn@uni-mainz.de

German Medical Data Sciences 2021: Digital Medicine: Recognize - Understand - Heal
R. Röhrig et al. (Eds.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI210540

46

The main idea of the InteKRator approach is to bring machine learning and

knowledge representation closer together to create an expert system automatically from

data, instead of manually modeling the system’s knowledge. Figure 1 visualizes this idea

in comparison to the manual creation of an expert system.

Figure 1. Comparison of Manual vs Automated Creation of an Expert System: The figure compares the manual
creation against the InteKRator approach. The InteKRator toolbox can overtake several steps in the creation
process using its machine learning capabilities.

1.2. Motivation

The InteKRator toolbox aims at implementing several results in the context of a special

knowledge bases and corresponding algorithms, that have been developed in the recent

years and presented, e.g., in [2,3,5] (among other works, see Section 2 or [12] for a more

elaborate list of related works). The knowledge bases were especially geared toward the

representation of knowledge learned by agents in a human-readable way.

InteKRator further aims at providing the implementations in a lightweight toolbox

(where the term “lightweight” refers to (1) having no external dependencies, (2) being

extremely small in size, and (3) having an easy-to-use interface—both as a library as well

as a stand-alone command line application).

Since the properties of the resulting toolbox seem to cover well the major re-

quirements of expert systems in the medical domain, such as the measurement of the

inference quality (see the upcoming section 1.3), another motivation of this work is to

further outline its usefulness in the medical context.

InteKRator also supports knowledge representation for continuous data, a property

that is rather rarely provided by other symbolic or logic based approaches.

The InteKRator toolbox can be considered the reference implementation of the

underlying knowledge representation paradigm, as well as for the learning, inference and

revision algorithms. To the extent of the authors’ knowledge, there is no other library

available that consolidates and implements these approaches.

1.3. Requirements

To be able to learn an expert system from data in the context of medical applications, the

following requirements are of importance:

 Machine Learning: Rule-based knowledge must be learned from a data set.

 Comprehensibility: The learned rule-based knowledge must be comprehensible

for humans (also for people not familiar with logic-based approaches).

 Certainty: The quality of the learned knowledge must be measurable.

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems 47

 Inference: It must be possible to draw meaningful conclusion from the knowl-

edge that has been learned.

 Revision: It should be possible to integrate new evidence in the already learned

knowledge (e.g., in case a new study provides new evidence after the knowledge

was learned).

 Usability and Tooling: The aforementioned requirements should be easy to use

and integrate in other applications (like web applications, smartphone

apps, etc.).

The InteKRator toolbox [12], meets the above requirements in a lightweight manner:

Besides a machine learning module that creates comprehensible knowledge based on

rules with exceptions from a data set, it allows to evaluate the resulting knowledge

against the original (or other) data sets. InteKRator allows for retrieving inferences for

new cases and knowledge that was once learned can be later revised manually or

automatically. Furthermore, being implemented in plain Java [18], no additional libraries

are required and the toolbox can be used as a Java library or as a stand alone application

from the command line. (Details will be provided in Section 3.)

2. State of the art

Expert systems have a long tradition in medical informatics and AI research. On the one

hand, software exists that can be used for creating expert systems, which is mostly geared

toward knowledge engineers, for modeling rule-based knowledge manually. Examples

for these kinds of approaches are logic programming systems like Prolog [16] or answer

set programming (ASP) [7] solvers like Clingo [8]. Unlike these approaches, the

InteKRator toolbox does not only support the manual creation of knowledge in the form

of rules with exceptions, but also allows for learning such knowledge directly from a

data set. Due to relying on the intuitive principle of rules with exception, InteKRator

does not require a user to have expertise in logic, neither for modeling nor for reading

automatically learned knowledge.

On the other hand, there are approaches from statistics and machine learning, like

decision trees (e.g., [6], Section 5.3) or Bayesian networks (e.g., [6], Section 12.2), which

are able to learn and/or represent relations in the data. Decision trees are able to learn a

classification scheme of the data, which is represented in the form of a tree structure.

Additional explanatory information may increase their comprehensibility. However, the

knowledge is not represented in the form of formal rules and, in contrast to a knowledge

base produced by InteKRator, a decision tree focuses more on the structural

dependencies among variables rather than on rule-based dependencies of their values.

Additionally, as many other graph-based approaches, a visualization of the tree structure

may have limitations in the representation of the knowledge, especially when dealing

with real-world problems having a large number of nodes.

Bayesian networks are oftentimes used to predetermine structural dependencies and

to learn the corresponding conditional probability distributions from data. Although there

exists also methods to learn the network structure as well [10], it can be hard to interpret

the results especially in case of a larger number of nodes.

A further, well-established approach that combines learning with the idea of creating

rules, is the Apriori algorithm by Agrawal et al. [1]. This approach is usually used for

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems48

learning association rules (as known, e.g., from recommender systems) rather than

learning a complete knowledge base. However, it uses techniques that are related to

preliminary works of InteKRator’s basic learning algorithm, which has been considered

in detail in [5].

Nowadays, there is still a need for expert systems in the medical sector and expert

systems research remains an active field. A recent example is [19], where an approach

uses ASP for representing the knowledge of cancer therapies. There, the knowledge was

gathered from clinical experts over about 16 years (according to [19]) and later

formalized manually in the form of rules, e.g., with default negations, without involving

machine learning for automating this process.

In contrast to the aforementioned approaches, the InteKRator toolbox offers a

machine learning module that allows for learning a complete knowledge base directly

from a provided data set. One of the major strengths of InteKRator is that the resulting

knowledge bases are built on the principle of rules with exceptions and are therefore

intuitively comprehensible, even for people who do not have a strong background in

logic: In a study by Krüger et al. [14], the comprehensibility exceeded that of ASP.

Preliminary works of InteKRator (e.g., [5]) have been tested and used in different

applications: in the context of AI in games (e.g., [9]), for improving learning capabilities

of agents (e.g., [4]), and for solving job-shop problems [13]. Recently, an earlier version

of the InteKRator toolbox has also been used to learn behavioral rules for optimizing

hospital processes [3]. However, to the best of our knowledge, this is the first work

proposing the InteKRator toolbox as a whole and applying its capabilities for learning of

medical expert systems.

3. Concept

InteKRator is a lightweight toolbox that integrates knowledge representation techniques

and machine learning. The main idea is to learn a knowledge base from a data set, so that

the knowledge base describes the inherent structure of the data set compactly in a human

readable way. Moreover, InteKRator allows for inference queries on such knowledge

bases and it is also possible to modify a knowledge base with new evidence. With

InteKRator, a knowledge base can also be evaluated against a data set, to measure the

certainty of the knowledge. Furthermore, InteKRator’s functionalities can be easily

integrated in web and other applications (both as a Java library and as an external

process), and they can also be accessed by a command line interface. With these features,

InteKRator shows great potential to satisfy the requirements from Section 1.3.

For the data processing, InteKRator reads and writes plain (space-separated) text

files and can also provide its output on the standard out of the process. By this, it can be

easily embedded in diverse applications, both as a library as well as an external process,

or it can be used as a stand-alone command line application. A detailed explanation on

the format of input and output files can be found in [12].

The following subsections will now demonstrate and explain the central concepts of

the InteKRator toolbox in the context of a small synthetic example data set.

3.1. Learning Module

The input of the learning module is a text file of (n + 1) space-separated columns: The

first n columns represent the values of the features of the data set; the remaining last

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems 49

column contains the values of an outcome variable. The output is a text file containing a

knowledge base comprising the rule-based knowledge about the data set. The upper part

of Figure 2 shows a small synthetic input data set as an example; the lower part shows

the resulting knowledge base (which will be considered later).

Applying the learning module to the data set results in a knowledge base which

compactly represents the knowledge contained in the data on several levels of

abstraction: The topmost level represents the most general rule, whereas the lower levels

comprise the more specific knowledge in the form of exceptions of rules on the higher

levels. The learning algorithm tries to represent the knowledge with as few as possible

rules and as few as possible exceptions to create a compact and comprehensible

representation. Figure 2 shows an example of the knowledge base extraction process

together with an interpretation in natural language (on the bottom right), where the

shades outline how the knowledge base can be read.

Figure 2. From Data Set to Expert System: The upper part shows a small synthetic data set as an example. The
left side of the lower part shows the knowledge base learned from data using InteKRator. The right side of the
lower part shows that the knowledge base can be read top-down (as indicated by the shades).

The numbers that are attached to the rules in the learned knowledge base on the

bottom left of Figure 2 represent the conditional probabilities P(conclusion | premise).

The learning module of InteKRator is not only able to handle columns of discrete

data. For continuous data columns, it offers advanced discretization options based on an

iterated clustering approach: By automatically detecting data columns of numeric data,

the algorithm performs a standard k-means clustering and iterates it with increasing k (if

desired), until no further non-empty clusters can be found. All values belonging to the

same cluster are then treated as one discrete value by the learning module. A naming

option allows for mapping eligible names to the learned clusters.

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems50

3.2. Inference Module

The inference module allows for querying a learned knowledge base for answers. Such

a mechanism is an essential part of an expert system. InteKRator’s inference module

allows for providing queries to the knowledge base, by providing a set of feature values.

The inference algorithm, which has its origins in [4], searches the knowledge base

upwards for the most specific rule whose premise is satisfied by the provided input values

(i.e., whose premise is a subset of the query’s set of feature values). Note that the rules

are ordered from general to specific in the knowledge base (as described in Section 3.1).

The output is the conclusion of the found rule.

In the recent years, similar to field of machine learning, it became also more and

more relevant for inference systems do not only provide conclusions, but to also explain

the inference results. InteKRator’s inference module provides an option that allows for

explaining based on which rule the result was inferred (together with the conditional

probability of the result). Figure 3 visualizes the concept of the inference module.

Figure 3. Inference Query and Outputs: The inference module of the InteKRator toolbox searches the learned
knowledge base upwards to find the most specific rule whose premise is satisfied by the input query. The output
is the conclusion of the found rule together with the conditional probability P(conclusion | premise). Optionally,
an explanation from which rule the conclusion was inferred can be provided.

3.3. Check Module

In the previous two subsections it has been described, how an expert system can be

learned from data and how inference queries can be performed on such a system. An

interesting question is now, how trustworthy such a learned knowledge base is. For this

purpose, InteKRator offers a check module, that takes a data set and a knowledge base

as input and performs an inference query on the knowledge base for each row of the data

set. It is then evaluated, for how many data rows the correct conclusion could be drawn

through the knowledge base (i.e., for how many rows the outcome value can be inferred

from the n feature values of the respective row, cf. Section 3.1). Note that the data set

must not necessarily be the one from which the knowledge base was learned (e.g., it is

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems 51

also possible to split a data set in training and test data and to use the check module with

the test data set, as usually in machine learning).

In the case of the synthetic data set considered in Figure 2 and Figure 3, in none of

the data rows the exact same combination of values refers to a different outcome. Thus,

the certainty provided by the check module is 1.0 here.

3.4. Revision Module

Another challenge of expert systems is the integration of new evident knowledge (e.g.,

in case a new study reveals new insights).

A solution to the problem of incorporating new knowledge is provided by the AI

subfield of belief revision. The revision module of the InteKRator toolbox offers a

revision mechanism that allows for incorporating new evidences in a learned knowledge

base. The revision algorithm, which has been introduced in [9], tries to incorporate a new

rule by affecting as few as possible of the knowledge that is already contained in the

knowledge base. This is done, according to [9], by adding the new rule as exception on

the most specific (i.e., the bottommost) level of the knowledge base. If a conflicting rule

does already exist there, the conflicting rule will be removed and if the correct conclusion

still cannot be drawn, the new rule with the new evidence will be added.

The presented approach conforms to common quality criteria for believe re-

vision [11], as has been outlined in [2]. Note that, in principle, InteKRator can perform

revision on any level of the knowledge base. However the quality criteria are only valid

in case revision is done on the most specific level with a complete premise (i.e., on

the (n + 1)-th level, where n is the number of features; see also Section 3.1).

4. Implementation

The InteKRator toolbox is implemented in plain Java [18]. No additional libraries are

needed. The toolbox consists of a single .jar file that can be used as a command line tool,

an external process or a Java library in other projects. The InteKRator project

is open source, licensed under the GNU Public License Version 3.0 (GPL v3.0).

The source code is well documented using Java’s documentation tool JavaDoc.

InteKRator operates on plain text files for in and output. This renders InteKRator a

lightweight and efficient tool that can be easily integrated in web and other applications.

The details of the implementation of the algorithms in InteKRator will go beyond

the scope here, but can be found in further literature, e.g., [4] and [9].

InteKRator can be downloaded on its GitLab repository site [12]. There, also further

help on how to use the different modules of the toolbox is (which can also be accessed

through the command line interface).

5. Lessons learned

InteKRator is an eligible toolbox for quickly setting up an expert system directly from a

data set. It thereby contributes to simplify the creation process of an expert system. The

resulting knowledge bases can be queried efficiently for ansers and a revision module

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems52

allows for incorporating new evidence (which should be done on the bottommost level

to satisfy common quality criteria for revision; see Section 3.4).

5.1 Benefits and Potential of the InteKRator toolbox

The benefits and the potential of InteKRator can be summarized as follows:

 Learning a knowledge base that can be queried as an expert system directly

from data instead of manual analysis and modeling steps (see Figure 1).

 Comprehensible resulting rule-based knowledge, due to its representation on

several levels of abstraction—by this means, the learned knowledge can be read

top-down up to an eligible level of abstraction (see Figure 2).

 Easy evaluation of the learned knowledge through InteKRator’s built-in check

module (see Section 3.3).

 Efficient and transparent inferences that can optionally provide explanations

from which rule a conclusion is drawn (see Figure 3).

 Automated incorporation of new evident knowledge (see Section 3.4).

 Simple to use and lightweight integration in applications, like web and other

applications (see Section 4).

5.2 Comparison to Existing Solutions and Innovation

An established logic-based solution for representing knowledge in practical applications

is answer set programming (ASP) [7], which is implemented , e.g., by the well-known

solver Clingo [8]. ASP has been used for representing knowledge bases in the medical

context (see [19] for a recent work). However, relying on the concept of default negation

(which is related to default logic, e.g., Reiter [15]), it may be hard to understand for non-

logicians and may lack a transparent explanation of inference results. It has been studied

in [14], that the special knowledge bases used by InteKRator (originating from [4] and

[5]) offer an increased comprehensibility to humans compared to ASP. Furthermore, it

has also been studied in [14], that inferences can be provided more efficiently in

comparison to Clingo. Moreover, to the extent of the authors’ knowledge, Clingo does

not provide an opportunity to learn answer set programs as knowledge bases

automatically from a data set.

A large collection of Java libraries related to AI and logic is TweetyProject [20].

Besides ASP, TweetyProject covers a large amount of further logic-based approaches.

In contrast to that, the InteKRator toolbox focuses on simplicity and a lightweight

interface, using approaches presented, e.g., in [5], [2], [3] (among others), which

TweetyProject currently does not seem to support. These approaches were designed for

the comprehensive representation of knowledge learned from data (originally in the

context of agents) and can be intuitively read—even by users not having expertise in

logic (cf. [14]). Thus, InteKRator could be an eligible choice for applications in multi-

disciplinary environments, as it is the case for the medical domain.

As has been shown already in Figure 1, lacking learning capabilities in knowledge

representation tools can result in additional work of analyzing the data and modeling the

results as rule-based knowledge to set up an expert system. Furthermore, the knowledge

represented by logic-based approaches can be difficult to understand, especially for

people not having a strong background in logic (see [14] for a comparison of

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems 53

comprehensibility of the knowledge bases used by InteKRator against answer set

programs).

Machine learning solutions perform well for learning relations from a data set (e.g.,

for classification tasks), but the learned knowledge often has a black box character, since

it is represented by a large number of weights (e.g., in case of neural networks). In

medical applications, such approaches might be less trustworthy than the explicit rule-

based approach used by InteKRator (whose weights relies on conditional probabilities

P(conclusion | premise), which are in general well understood).

Methods that are able to learn rule-based knowledge from data (as known, e.g., from

recommender systems), can be limited to single rules (or a set of rules) only. In contrast

to that, InteKRator learns a complete knowledge base and provides an extended toolbox

for further tasks that are important in the context of an expert system (like inference,

evaluation and revision modules).

6 Conclusion

This paper introduced the InteKRator toolbox as an eligible lightweight instrument to

automatically create an expert system from data. InteKRator thereby contributes to

simplify the creation process of an expert system by avoiding manual analysis and

knowledge modeling steps. The resulting knowledge is represented in a comprehensible

way, allows for efficient inferences and can be revised with new evidence.

While such a system has the potential to offer great opportunities for quickly

applying results retrieved from data in practice, it should, however, always be used with

care: For example, knowledge contained in a data set can be misleading (depending on

how the data was collected) and, in principle, every information technology system may

be subject to errors or security issues. Thus, expert systems created with the InteKRator

toolbox might serve best for supporting human decisions only (especially in critical

areas).

Besides the further development of the toolbox, future work may comprise the

development of a graphical user interface (GUI) and the implementation in the context

of medical applications. First attempts have already shown promising results.

Furthermore, a comparative study regarding other knowledge representation and/or

explainable machine learning approaches that allow for learning comprehensive human-

readable knowledge from data could be performed in the future. This could

help to gain more insights into InteKRator’s strengths, especially its performance and

comprehensibility properties. First attempts on that have been made in [14], comparing

its underlying knowledge representation paradigm and the inference algorithm to ASP

and the ASP-solver Clingo [8] (ASP has been considered in the medical domain, e.g.,

in [19]).

Even if the check module allows already for measuring the quality of a learned

expert system, an evaluation of the inferences by a learned expert system in the context

of a real-world data set against those of a human expert could also be of interest.

Conflict of Interest

The authors state that they have no conflict of interests.

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems54

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo, Fast Discovery of Association Rules. In:
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.), Advances in Knowledge

Discovery and Data Mining, 307–328. The MIT Press, Cambridge, Massachusetts (1996).
[2] D. Apeldoorn, A. Dockhorn, Exception-Tolerant Hierarchical Knowledge Bases for Forward Model

Learning. IEEE Transaction on Games (early access) (2020). DOI: 10.1109/TG.2020.3008002
[3] D.Apeldoorn, L. Hadidi, T. Panholzer, Learning Behavioral Rules from Multi-Agent Simulations for

Optimizing Hospital Processes. In: Chomphuwiset, P., Kim, J., Pawara, P. (eds.), Multi-disciplinary

Trends in Artificial Intelligence – 14th International Conference, MIWAI 2021, Virtual Event, July 2–3,

2021, Proceedings, 14–26. Springer, Cham (2021). DOI: 10.1007/978-3-030-80253-0_2
[4] D. Apeldoorn, G. Kern-Isberner, When Should Learning Agents Switch to Explicit Knowledge? In: C.

Benzmüller, G. Sutcliffe, R. Rojas (eds.), GCAI 2016. 2nd Global Conference on Artificial Intelligence.
EPiC Series in Computing, vol. 41, 174–186. EasyChair Publications (2016).

[5] D. Apeldoorn, G. Kern-Isberner, Towards an Understanding of What is Learned: Extracting Multi-
Abstraction-Level Knowledge from Learning Agents. In: V. Rus, Z. Markov (eds.), Proceedings of the

Thirtieth International Florida Artificial Intelligence Research Society Conference, 764–767. AAAI
Press, Palo Alto, California (2017).

[6] C. Beierle, G. Kern-Isberner, Methoden wissensbasierter Systeme – Grundlagen, Algorithmen,
Anwendungen (4. Auflage). Vieweg+Teubner, Wiesbaden (2008).

[7] G. Brewka, T. Eiter, M. Truszczyński, Anser Set Programming at a Glance. Commun. ACM, 54(12):92–
103, 2011.

[8] Clingo – A Grounder and Solver for Logic Programs: https://github.com/potassco/clingo, accessed on Mar
31st, 2021.

[9] A. Dockhorn, D. Apeldoorn: Forward Model Approximation for General Video Game Learning. In: C.
Browne, M. H. M. Winands, J. Liu, M. Preuss (eds.), Proceedings of the 2018 IEEE Conference on

Computational Intelligence and Games (CIG’18), 425–432, IEEE, Piscataway (2018).
[10] D. Fierens, H. Blockeel (Supervisor), M. Bruynooghe (Supervisor), Learning Directed Probabilistic

Logical Models from Relational Data (Het leren van gerichte probabilistisch-logische modellen uit
relationele gegevens). PhD Thesis, KU Leuven, Leuven (2008).

[11] S. O. Hansson, Logic of Belief Revision. In: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy
(2017).

[12] InteKRator Toolbox: https://www.gitlab.com/dapel1/intekrator_toolbox, accessed on Mar 31st, 2021.
[13] I. Kuhn, Heuristische Optimierung durch menschliche Intuition – Das beste aus zwei Welten. In: M.

Becker (ed.), SKILL 2019 – Studierendenkonferenz Informatik, 97–108, Gesellschaft für Informatik e. V.
(2019).

[14] C. Krüger, D. Apeldoorn, G. Kern-Isberner, Comparing Answer Set Programming and Hierarchical
Knowledge Bases Regarding Comprehensibility and Reasoning Efficiency in the Context of Agents. In:
Proceedings of the 30th International Workshop on Qualitative Reasoning (QR 2017) at International

Joint Conference on Artificial Intelligence (IJCAI 2017) in Melbourne Australia, Northwestern
University, Evanston, Illinois (2017).

[15] R. Reiter, A Logic for Default Reasoning. Artificial Intelligence, 13(1–2):81–132, 1980.
[16] SWI-Prolog: www.swi-prolog.org, accessed on Mar 31st, 2021.
[17] J G Sotos, MYCIN and NEOMYCIN: Two Approaches to Generating Explanations in Rule-Based Expert

Systems. Aviat Space Environ Med. 1990 Oct;61(10):950-4.
[18] Sun Microsystems, Java Language Overview. Sun Whitepaper, 1995.
[19] A. Thevapalan, G. Kern-Isberner, D. Howey, C. Beierle, R. Meyer, M. Nietzke, Decision Support Core

System for Cancer Therapies Using ASP-HEX. In: K. Brawner, V. Rus (eds.), Processdings of the

Theirty-First International Florida Artificial Intelligence Research Society Conference, FLAIRS 2018,

Melbourne, Florida, USA. May 21-23 2018, 531–536. AAAI Press (2018).
[20] TweetyProject: https://tweetyproject.org, accessed on Jul 24th, 2021.

D. Apeldoorn and T. Panholzer / Automated Creation of Expert Systems 55

