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Abstract. In this paper a machine learning model for automatic detection of 
abnormalities in electroencephalography (EEG) is dissected into parts, so that the 
influence of each part on the classification accuracy score can be examined. The 
most successful setup of several shallow artificial neural networks aggregated via 
voting results in accuracy of 81%. Stepwise simplification of the model shows the 
expected decrease in accuracy, but a naive model with thresholding of a single 
extracted feature (relative wavelet energy) is still able to achieve 75%, which 
remains strongly above the random guess baseline of 54%. These results suggest the 
feasibility of building a simple classification model ensuring accuracy scores close 
to the state-of-the-art research but remaining fully interpretable. 
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1. Introduction 

Electroencephalography (EEG) is a method of assessing the brain electrical activity [1]. 

EEG plays a key role for example in neurology as a diagnostic and monitoring tool for 

epilepsy or sleep disorders. The important medical role of EEG technology convolved 

with the rapid methodological development of data analysis in the recent years led to 

multiple solutions aiming in automatic EEG data analysis. Seizure detection and 

prediction together with epileptiform abnormalities detection remain on the leading 

target positions in this research. With the increasing complexity of the used models we 

observe improvements in the scores achieved on specific datasets, but the clinical 

usability remains rather limited. 

This problem recently became well recognized in computational medicine [2], and 

in EEG research in particular [3, 4]. One important approach to improving the situation 

is working on interpretability of deep artificial neural networks (DNN) which are often 

used to perform classification and prediction tasks on medical data [5]. In this paper we 

are dealing rather with shallow networks embedded into a multi-step pipeline which 

includes preprocessing, feature selection and a stabilizing voting system. Our goal is to 
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take a step backwards and examine the potential of simplifying the methodology to the 

level, when it is possible to return to a direct discussion of the results with the medical 

experts experienced in manual EEG analysis. This step is done by dissecting the shallow 

artificial network-based EEG classification pipeline from Brenner et al. [6]. It was 

designed to classify normal and abnormal EEG recordings from TUH Abnormal data 

corpus (v.1.1.2) [7]. The resulting accuracy of 81% was later outperformed by several 

other approaches, which due to their complexity would be much more difficult to 

simplify and interpret. Roy et al. [8] reported the accuracy score of 86% achieved through 

employing ChronoNet, a cross-over of convolutional and recurrent neural networks. 

Recent preprint of Fernando et al. [9] introduces Neural Memory Networks with the 

result of 93%. 

The paper of Brenner et al. [6] presents a relatively simple machine learning 

approach which is based on wavelet features and consists of several optimization steps. 

This simplicity enables us to examine the influence of different features and optimization 

steps on the final accuracy score. The presented work can be seen as research towards 

interpretability of the machine learning solutions for EEG analysis, with the practical 

goal of facilitating the feedback between medical professionals and data scientists which 

is necessary for development of clinically usable methods. 

2. Methods 

2.1.  Data 

The data used for the classification is the TUH Abnormal EEG Corpus (v.2.0). Lopez 

and colleagues [6] used a decision tree to label an EEG session as either normal or 

abnormal. The original data set contains 2993 records and is readily split into a training 

and evaluation data set. In Brenner et al. [6] following previous works [10] the single 

EEG channel T5 - O1 was used and only 60 sec of the recording was considered. The 

raw data was resampled to 250 Hz, band filtered (1-50 Hz) and then a moving window 

of length 10 seconds and overlap 5 seconds was applied to split records into 11 segments 

each. While keeping track of the correspondences of the segments to the original records, 

pieces with abnormally high amplitude (above 100 µV) were discarded from further 

processing. On the remaining segments 6 decomposition levels of Symlets wavelet 

transform (order 7) were extracted. Statistics were computed over the set of wavelet 

coefficients to form representative feature vectors (maximum, minimum, mean, standard 

deviation, wavelet entropy, relative wavelet energy). Given 6 statistical values for each 

set of wavelet coefficients, the resulting feature vectors hold 42 values per segment. 

2.2.  Starting point: the original classification pipeline (Figure 1) 

Using MATLAB’s PatternNet tool, Brenner et al. [6] achieved an accuracy of 80.51% 

with a network structure with 2 layers, 15 nodes each. 10 instances of such a network 

were trained on the dedicated train set and applied to the EEG segments. The 

classification per record was implemented via a two-phase voting system. Firstly, the 

classification results from 10 networks on the single segments are averaged to decide on 

the segment label. Secondly, a majority voting is applied to the 11 overlapping segments 

from one record to decide about the final classification. Since certain segments of the 
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EEG set were discarded due to amplitude filtering, in some EEG sessions less than 11 

segments were used in the voting process. 

2.3.  Pipeline interpretability: modifying single steps 

In this paper we start from the readily extracted features and reconstruct the pipeline 

illustrated in Figure 1, to confirm the starting point for our accuracy. In the next steps we 

modify several parts of the pipeline to understand their influence on the overall accuracy 

score. We have tested a) the choice of the EEG channel used as the input, b) the effect 

of the voting and averaging, c) different network architectures (number of layers and 

nodes) and d) the choice of the statistical wavelet features used as the input. Moreover, 

we investigated the results of replacing the neural network as a main classification block 

with a simple single-feature thresholding (Figure 2). 

 

 

Figure 1. The original classification pipeline from [6], in orange the modified parts are marked. 

3. Results 

Step 1. Verifying the baseline results. We re-implemented the original pipeline [6] and 

obtained the accuracy of 80.15%, which is close to the reported 80.51% with the 

difference explained by the update of the dataset and the random initialization of the 

network weights. 

Step 2. Other single channels. T5-O1 channel was already earlier reported as a 

promising choice [11]. The default setup was tested on the other 20 EEG channels of the 

TCP montage to confirm the superiority T5 - O1 channel (see Figure 3). The worst 

performing channel appears to be FP1-F7 with 69.57%. Both highest and lowest scores 

are achieved in the left hemisphere. 

Step 3. Removing the voting. Each 60 seconds long data fragment is originally 

divided into 11 overlapping segments which inherit the original label. The predicted 

labels are used to vote for the whole record. Therefore, after removing the voting, the 

results are not directly comparable. Nevertheless, we can treat each 10 sec segments as 

a representation of the original data and assess the segment-based accuracy of 77.09%. 
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Figure 2. Modifications of the original pipelines. The orange color marks the parts where the modification was 

introduced. 

 

 

Figure 3. Accuracies of the pipeline based on different single EEG channels. 

 

 

Figure 4. The dependence between the number of averaged networks  and the resulting accuracy variance. 

 

Step 4. Effect of averaging. 10 independent runs of the pipeline with removed averaging 

resulted in accuracy between 78.26% and 80.08%. To investigate the relationship 

between the accuracy variation and the number of averaged by the pipeline networks, we 

tried a different number of averaged networks and computed the corresponding variance 
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in accuracy percentage. Figure 4 supports the originally chosen 10 networks as an 

adequate number to optimize the ratio between the computation time and the variance. 

 

Figure 5. Different number of layers and nodes and the resulting pipeline accuracy. 

 

Step 5. Different network structures. We tested from 1 to 5 numbers of layers. 

The number of nodes in each layer was kept identical and took values N=1, 5, 15, 25, 50. 

Figure 5 illustrates the best result of 81.16% and worst of 77.9%. The trivial setup with 

1 layer and one node achieved 78.62%, which is, considering the model complexity 

differences, remarkably close to the best one. 

Step 6. Single feature in 1x1 net. The surprisingly high performance of a simplistic 

1x1 net suggested the next simplification step, namely reducing the number of the input 

features from the original 42 to 1. On Figure 6 we presented the performance of the 

different features fed into 1x1 net, grouped by the wavelet decomposition level. Relative 

wavelet energy on D3 (feature nr. 30) achieved the best accuracy of 77.17 %. 

Step 7. Threshold-based approach. Finally, the relatively high score obtained with 

the simplistic network of one layer and one node suggested one more step towards 

simplification, namely putting a threshold on the feature chosen in step 6. The threshold 

was optimized to the value 23 based on the best accuracy on the train set and resulted in 

75.36% accuracy on the test set. 

 

Figure 6. Accuracy achieved by single statistical features combined  with a simplistic network of 1 layer and 

1 node. 
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4. Discussion 

Interpretability of machine learning [12] is being recognized as an important part of 

medical AI development. In this paper we took a simple approach which nevertheless 

allowed us to learn many things about the discussed computational pipeline. The model 

was segmented into pieces which could be easily modified or removed (Figure 1). The 

complete pipeline started from 80.15% accuracy achieved by multiple averaged shallow 

networks with an added voting system. After several steps of degrading we found out 

that even simple thresholding on a single feature (relative wavelet energy on D3 

coefficients) can get accuracy as good as 75.36% (with the random guess baseline of 

54.35%). 

Experiments with different computational steps supported the importance of channel 

and feature choice. Specific ANN structure (number of layers and nodes) did not seem 

to have that large influence, likely due to MATLAB internal optimization algorithms. In 

further work we plan to reconstruct the pipeline in Python to gain better control of the 

computational steps. 

Averaging multiple randomly initiated networks results in essentially improved 

robustness and makes the results more reproducible. 

Interestingly, we discovered that different setups and initializations keep 

consistently correctly classifying a certain subset of the data. The differences in the 

accuracy can be attributed to much smaller subsets which are classified less consistently. 

In the further work we plan to collaborate with the medical professionals to better 

understand this issue. This collaboration can also help with a labelling problem which 

occurs in our computational setup. The labels attributed to the full EEG records are 

automatically inherited by smaller analyzed fragments. Inheritance of “abnormal” labels 

may potentially result in an error which can be recognized only by a trained professional. 

The approach presented in this paper can be successfully used in typical for 

medically relevant biosignals setup, when machine learning solution is embedded into 

multi-step analysis, which includes e.g. feature extraction. It can be potentially combined 

with testing simple and easily interpretable machine learning algorithms, such as 

decision trees and regression models [4] as well as with deep nets interpretability 

study [5]. 

5. Conclusion 

The development of methods for automatic EEG analysis is very promising but requires 

careful tracking of the underlying mechanisms. In this paper we attempted to study one 

of the machine learning models for classification of normal and abnormal EEG data to 

investigate the influence of different computational steps. The obtained results provide 

an important insight about most relevant computational parts (e.g. averaging, channel 

choice) and suggesting further analytical steps. In particular, the reported difference in 

feature importance can be studied via employing better interpretable features, such as a 

combination of frequencies and entropies instead of statistics of wavelet coefficients. 
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