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Abstract. Record linkage refers to a range of methods for merging and 
consolidating data in a manner such that duplicates are detected and false links are 

avoided. It is crucial for such a task to discern between similarity and identity of 
entities. This paper explores the implications of the ontological concepts of identity 

for record linkage (RL) on biomedical data sets. In order to draw substantial 

conclusions, we use the differentiation between numerical identity, qualitative 
identity and relational identity. We will discuss the problems of using similarity 

measures for record pairs and quality identity for ascertaining the real status of these 

pairs. We conclude that relational identity should be operationalized for RL. 
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1. Introduction 

Many areas of health and biomedical research require the application of record linkage 

(RL) methods as a preparatory step for a large number of retrospective studies using 

datasets from different sources [1–3]. Cross-organizational linking data of different 

electronic health record systems is an example for biomedical RL in the context of 

healthcare [4]. Two central goals for linking records are (i) increasing the size of the 

study population (horizontal enrichment) and (ii) enriching the information on the 

individuals involved (vertical enrichment). Both goals serve the overall aim of increasing 

the utility of available data in terms of evidence-based medicine. 

RL or reference reconciliation [5] can be defined as the process of detecting records 

that refer to the same real-world entities but contain discrepancies, due, for example, 

misspelled names, changes of zip codes or different diagnoses [6]. RL is necessary when 

the sources do not have a common unique entity identifier. Usually, record pairs are then 

formed and an algorithm decides whether two records belong to the same entity (the pair 

is called a match: M) or to two different entities (the pair is called a non-match: U).  

There are different categories of methods, especially from the fields of machine 

learning and classical statistics [7, 8]. In all these approaches, it is necessary to compute 

similarities between the entities to be linked. It is common to assume structured data, 

e.g., tables such as Patient(firstname, lastname, place, dbirth, mbirth, ybirth, sex), which 
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represent the entities to be linked. In order to keep the complexity low, the similarities 

are usually computed in a pairwise comparison, leading to so-called comparison patterns 

(denoted as ). For example, the following data pairs 

('Urs', 'Schmidt', 'Bern', '18', '11', '1990', 'm') 

('Urs', 'Schmitt', 'Berne', '18', '11', '1990', 'm') 

leads to the following corresponding binary comparison pattern : 

(1, 0, 0, 1, 1, 1, 1). 

Continuous comparison patterns allows for higher discernibility between matches 

and non-matches. They can be computed by using string metrics such as the Levenshtein 

metric, which in our example leads to the following comparison pattern (using the 

levenshteinSim function in the R-package RecordLinkage [9]): 

(1, 0.86, 0.8, 1, 1, 1, 1). 

In probabilistic RL applications, conditional probabilities  and  are 

estimated [10], used for computing the global weight, for which a threshold for definite 

matches has to be determined: 

 (1) 
Relying only on similarities of such data pairs and comparison patterns in order to 

determine the match status (identity) has three related drawbacks. First, contextual 

information that could help in discerning between entities is lacking. Second, changing 

semantics between different data sources is not considered. Both issues are tackled by 

ontology-based semantic enrichments [11-13]. However, the most crucial point is the 

lack of consideration regarding the concept of identity (third drawback). Why should 

such a consideration matter? There are two main reasons: (i) there is a need to 

differentiate between changes in the same entity (e.g., the same virus exhibits new 

characteristics) and differences that relate to different entities (e.g., a new virus has 

emerged) and (ii) there is a lack of guidance on how to resolve synonyms (false non-

matches) and homonyms (false matches), especially in the training phase of the 

algorithms. In the following, we provide a first step towards the translation of 

philosophical insights related to the concept of identity into the domain of RL. 

2. Methods: Concepts of Identity 

In ancient philosophy, the problem of determining identity as persistence through time 

is discussed by developing certain thought experiments. A prominent example is the ship 

of Theseus. The central question is whether the replacement of all components 

(materials) and changes in the shape of the ship are compatible with its persistence 

through time. More generally, can an enduring entity gain and/or shed arbitrary many 

properties without losing its identity? In the domain of ontology engineering, this 

question arises in the connection of data objects that change over time. 

Let us return to the ship of Theseus: Since there is no definite answer to this paradox, 

it is common practice in philosophy to introduce distinctions in order to develop a better 

grasp of such problems. One distinction is between numerical and qualitative identity. 

Numerical identity means, that the same entity is referenced at different times, even 

though it might be denoted differently. For example, in astronomy, the morning star and 

the evening start are one and the same entity, the planet Venus. Qualitative identity is 

given when two entities have the same properties (they are indiscernible), but are not 

necessarily one and the same. An example is given by two biosamples that share the 
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same characteristics, e.g., genomic structure, uniformity of cell size, uniformity of cell 

shape, etc. Unlike the concept of similarity in RL, qualitative identity is not restricted to 

locally available attributes, but is related all determinable ones. The definition of 

numerical identity provides no guidance for the practice, since it remains unclear on what 

basis the different signifiers (labels or words) are defined as referring to the same entity. 

However, the definition of qualitative identity can be used to operationalize the concept 

of identity as it refers to the process of performing comparisons. 

Operationalization of the identity concept by qualitative identity can be based on 

relational identity: Listing of all relations that an entity x has within itself (its attributes) 

and to other entities. In the case of a biosample, the NCBI "BioSample" attributes provide 

the basis for such a list. Again, the idea behind relational identity is that all entities get 

their identity through relations within themselves and with their environment, not just by 

assigning attribute values. For example, the name of a patient is not just an attribute of 

the patient, but a relation between the patient and those authorities that have certified and 

validated that name assignment. Hence, relations such as "identified by" or "certified by" 

are part of the relational identity of the patient. 

3. Results: Consequences for the Record Linkage Practice  

Using similarity measures to determine the matching status in RL applications is an 

application of qualitative identity in a loose sense: It is sufficient that some properties 

between two entities have high similarity in order to deduce numerical identity (match 

assignment). Due to its simplicity, such an approach cannot account for real-word 

changes of characteristics or for accidental similarities (i). But even if it works well in 

practice, the clerical reviews for homonyms and synonyms show that there are additional 

mechanisms for determining (numerical) identity, taking context information into 

consideration (ii). This reliance on implicit and contextual knowledge is unusual for a 

discipline that seeks to automate or to enhance decisions. One way to make such 

knowledge explicit is to use ontologies with their relational approach. 

To enhance the practice of RL based on the qualitative identity concept that is 

concretized as relational identity, we propose a hierarchical approach: At the top, an 

ontology for the RL context is defined, which includes relations and attributes, e.g., 

ontology for clinical research. Based on this ontology, attributes are semantically 

enriched in order to be able to map different descriptions and denotations of the same 

concepts, e.g., mapping the attributes "target variable" and "outcome" used at different 

sites. At the bottom, an RL method is applied that is able to consider both attributional 

as well as relational similarity. Relational similarity compares the relationships of 

concepts (A::B) in a relation with those of other relations (C::D). Values for such 

relationships of concepts can be generated by word embeddings [14]. This ontology-

based approach, motivated by the qualitative identity concept, allows the consideration 

of relational (structural) and semantic methods in addition to string-based methods. The 

RL methods using string metrics are often more sophisticated than their counterparts  

used in ontology matching, due to the focus on similarity between record pairs, 

reglardless of semantics. Hence, there are many extensions, for example by considering 

frequency of attribute values [15] or missing values [16]. 

In the end, this hierarchical approach realizes qualitative identity in a systematic and 

reflective way. In practice, the false matches and non-matches of RL methods will be 

reduced, as more context information is included (we ignore data protection issues here). 
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Regarding semantic enrichment as part of our approach, one reviewer suggested the 

following example related to LOINC (Logical Observation Identifiers Names and 

Codes): Codes 94762-2 and 94562-6 are attribute values for measuring SARS-CoV-2 

antibodies. By looking up the definitions for both codes, a "94562-6 is-a 94762-2" 

relation can be established, which allows to match two different SARS-CoV-2 tests 

performed in different laboratories that use different levels of granularity when coding 

observations with LOINC. 

Even with such an extended approach to RL, numerical identity cannot be 

guaranteed. As described above, numerical identity is a concept used in practice to 

describe our conclusion in terms of "Yes, the same biosample is represented by these two 

records".  It has value for reflection (such as in this paper), not for direct guidance of RL 

practice. However, indirectly it has a huge impact, since the profundity of a theory 

heavily depends on the depths of the problems it sets out to tackle. Considering identity 

as a notion relevant for RL allows for a broader perspective, especially with respect to 

the self-understanding of RL as a scientific field. In addition to that, discussions with 

respect to master patient identifiers and electronic IDs also benefit from such a 

perspective. 

4. Discussion 

One important issue that should be investigated further is the temporal dimension of 

entities to be linked. In order to capture relationships throughout the history of an entity, 

temporal entities should be differentiated from enduring entities, e.g., an event such as 

an accident in contrast to the persons involved. The basic fundamental ontology (BFO), 

which is used as an upper-level template ontology for many biomedical fields, provides 

such a categorization [17]. The fundamental distinction of the BFO is between 

continuants (entities that persist through time while maintaining their identity) and 

occurrents (entities that unfold themselves in time or are the instantaneous boundaries of 

such entities without preserving any identity besides being registered). The additional 

differentiations, such as processes and temporal regions, allow a better grasp of the time 

dimension, when describing relationships between entities. 

Even though the paper uses some philosophical notions and examples, it is intended 

for the field of medical informatics. Our assumption is that biomedical RL will benefit 

from philosophical insights into the concepts of identity, but some further work of 

adaptation is necessary. The next steps will be to develop an ontology-based framework 

for RL and to concretize identity concepts. In this connection, it will be shown that other 

areas, such as data protection and even virology, will benefit as well from this future 

work. How might virology profit from the elaboration of identity within the RL context? 

For example, by enriching phylogenetic analysis with the concept of relational identity. 

The problem of tracing back the origin of a virus through genetic analysis is similar to 

the paradox of the ship of Theseus: After how many mutations does a new type of virus 

emerge? The lack of clear decision rules for grouping non-leaf nodes in phylogenetic 

trees into taxonomic units reflects this uncertainty. Alignment algorithms for generating 

these trees represent the RL approach to sequence similarity, which is supported by the 

fact that the Levenshtein algorithm for strings, which is heavily used in RL, is just 

another name for the Needleman-Wunsch algorithm for sequences used in bioinformatics. 
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