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Abstract. Heart failure (HF) is a grave problem in the clinical and public health 
sectors. The aim of this study is to develop a phenotyping algorithm to identify 
patients with HF by using the medical information database network (MID-NET) in 
Japan. Methods: From April 1 to December 31, 2013, clinical data of patients with 
HF were obtained from MID-NET. A phenotyping algorithm was developed with 
machine learning by using disease names, examinations, and medications. Two 
doctors validated the cases by manually reviewing the medical records according to 
the Japanese HF guidelines. The algorithm was also validated with different cohorts 
from an inpatient database of the Department of Cardiovascular Medicine at Tohoku 
University Hospital. Results: The algorithm, which initially had low precision, was 
improved by incorporating the value of B-type natriuretic peptide and the 
combination of medications related to HF. Finally, the algorithm on a different 

cohort was verified with higher precision (35.0% → 87.8%). Conclusions: Proper 

algorithms can be used to identify patients with HF. 
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1. Introduction 

The medical information database network (MID-NET) managed by the Pharmaceuticals 

and Medical Devices Agency has been available to the public in Japan since 2018 [1,2]. 

The database has data collected from several medical institutions, including national 

university hospitals and private hospital groups. Tohoku University Hospital is one of 

the facilities collaborating in the MID-NET project. Additionally, pharmaceutical 

companies can use MID-NET for post-marketing surveillance of pharmaceutical 

products. To correctly extract cases of certain target diseases from the database, the 

identification of clinical events known as electronic phenotyping is extremely important 

[3,4].  Heart failure (HF) is a major cause of death in developed countries, including 

Japan [5]. It is expected that the number of HF cases will continue to rapidly increase 

because of the aging population [6]. To correctly assess the actual number of HF patients, 

it is necessary to extract accurate cases of HF rather than using uncertain disease names 

on electronic medical records. Recently, electronic medical record-based phenotyping 
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has been used to identify certain cases [7]. In this study, we aim to identify patients with 

HF using MID-NET data and improve the algorithm with machine learning. 

2. Methods 

2.1. Data extraction 

We analyzed 15,489 inpatient cases from Tohoku University Hospital (TUH) between 

April 1 and December 31, 2013, using data extracted from MID-NET. First, we extracted 

inpatient cases coded as having possible HF using International Classifications of 

Diseases 10 revision (ICD10) codes [8]. Based on the clinical guidelines released by the 

Japanese Circulation Society [9], we set the extraction criteria (i.e., the initial rule) to 

cases that included disease names, examinations, and medications related to HF. As 

shown in Table 1, the initial rule was set as Disease name a; Examination a, Examination 

b, or Examination c; and Drug a or Drug b. The dates were considered as follows: The 

data were retrieved for each examination or drug within one month, before or after the 

date the disease name was recorded. Next, two physicians, including a cardiologist from 

TUH, evaluated a random sample of 200 cases and verified the accuracy of the cases by 

reviewing the electronic medical records. This study was approved by the ethics review 

committee of Tohoku University (No. 2020-1-459). 

2.2. Improvement of algorithm 

Using the two physicians’ evaluations, we trained the XGBoost model using 5-fold 

cross-validation in R [10] to improve the algorithm, which enabled the extraction of 

certain factors to enhance its accuracy. Finally, we retrospectively tested the algorithm 

on a cohort from an inpatient database of the TUH Department of Cardiovascular 

Medicine [11]. Precision is defined as the number of true positives divided by the sum 

of the number of true positives and the number of false positives. Recall is defined as the 

number of true positives divided by the sum of the number of true positives and the 

number of false negatives. The F-measure is defined as 2 × Precision × Recall/ (Precision 

+ Recall). 

 

 
Table 1. Initial rule to identify HF cases. 

Factors Contents  

Disease name A Heart failure (I500, I501, I509) 

Examination a Chest radiography 

Examination b Echocardiography  
Examination c B-type natriuretic peptide (BNP) 100 pg/mL or more
Drug a Loop diuretics or tolvaptan 

Drug b Angiotensin-converting-enzyme inhibitor, angiotensin II 
receptor blocker, beta blocker, anti-aldosterone, cardiotonic 
agent, atrial natriuretic peptide, phosphodiesterase (PDE) 
inhibitor, nitrate, or calcium channel inhibitor 
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3. Results 

A total of 5,282 cases were extracted using only disease names related to HF. From those, 

2,799 cases corresponding to the initial rule (Table 1) were retrieved, and 200 cases were 

randomly sampled and assessed by reviewing the medical records. A total of 70 cases 

were found to be true HF cases. Thus, the initial positive predictive value was 0.350.           

 
Figure 1. BNP is the strongest factor related to heart failure (AUC=0.847). 

 

Next, we modified the algorithm using a machine learning method with XGBoost 

model, and the results revealed the correlation of HF with several factors. The number 

of variables was 13,349. As shown in Figure 1, the B-type natriuretic peptide (BNP) 

value was the strongest factor linked to HF. Using this data, we could determine the 

conditions contributing to improving the validity of the cases with HF. Figure 2 shows 

the distribution of true HF cases according to the serum BNP values (high, middle, and 

low ranges). Then, the high group (BNP>400) was labeled “heart failure,” and the low 

group (BNP<100) was excluded. For the middle group, candidates were additionally 

categorized according to their prescribed medication for HF. Drugs were classified into 

six groups: catecholamine (G1); human atrial natriuretic peptide (HANP) (G2); diuretic 

(G3); spironolactone (G4); angiotensin receptor blocker, angiotensin-converting-enzyme 

inhibitor, or beta blocker (G5); and digitalis (G6). Using the XGBoost model helped  

clarify that the combinations of catecholamine and diuretic (G1 and G3), HANP and 

diuretic (G2 and G3), and diuretic and digitalis (G3 and G6) were strongly correlated 

with HF (Figure 3). That is why these three conditions were also added to the modified 

algorithm. 

Finally, our analyses indicate that the precision rate increased to 0.878 from 0.350 

when compared with the initial rule, but the recall rate decreased to 0.697 from 0.923. 

The F-measure also increased from 0.506 to 0.777 (Table 2). 
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Figure 2. Distribution of true HF cases according to BNP 

 

 

 
Figure 3. Medication related to HF 

 

Table 2. Improvement in accuracy 

Evaluation Initial Revised 

Precision 0.350 0.878

Recall 0.923 0.697

F-measure 0.506 0.777

4. Discussion 

We developed an algorithm to identify HF cases with high precision. Disease names 

coded with ICD 10 were not sufficient to identify true HF cases because such cases 

extracted by the code also included suspected or chronic cases. The addition of 

examinations and medications did not improve the accuracy. However, based on 

machine learning, the use of serum BNP values and the combination of related 

medications increased the precision, as indicated by a higher F-measure. In addition to 

the data available from the MID-NET, other structured or unstructured data would further 

contribute to increasing the accuracy. Nevertheless, it is inevitable that algorithms will 

have tradeoffs between precision and recall, which is why it is necessary to select 

appropriate algorithms based on the intended research. However, there are some 

limitations to this study. First, the total number of cases was relatively small. Second, the 

revised algorithm was validated in only one institute. Hence, more cases are required for 

machine learning and validation. However, even with those limitations, our results are 

similar to some previous studies [12-14]. With additional factors such as the results from 

electrocardiogram (ECG), ultrasound cardiography (UCG), and catheter examinations 

from a hospital information system [15], novel and better algorithms can be developed 
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in the future. For example, heart rate in an ECG and ejection fraction in a UCG can be 

one of the best factors to detect HF. In conclusion, we extracted clinical data from a large 

clinical database in Japan for electronic phenotyping of HF. To accurately identify 

patients with HF, a machine learning method was implemented. Overall, leveraging large 

amounts of clinical data can be beneficial for medical research progress. 
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