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Abstract. In this work, an attempt has been made to classify various emotional 
states in Electrodermal Activity (EDA) signals using modified Hjorth features and 

non-parametric classifiers. For this, the EDA signals are collected from a publicly 

available online database. The EDA is decomposed into SCL (Skin Conductance 
Level) and SCR (Skin Conductance Response). Five features, namely activity, 

mobility, complexity, chaos, and hazard, collectively known as modified Hjorth 

features, are extracted from SCR and SCL. Four non-parametric classifiers, namely, 
random forest, k-nearest neighbor, support vector machine, and rotation forest, are 

used for the classification. The results demonstrate that the proposed approach can 

classify the emotional states in EDA. Most of the features exhibit statistical 
significance in discriminating emotional states. It is found that the combination of 

modified Hjorth features and rotation forest is most accurate in classifying the 

emotional states. Thus, the result demonstrates that this method can recognize 
valence and arousal dimensions under various clinical conditions. 
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1. Introduction 

Emotion is a complex behavioral phenomenon that influences thought and behavior [1]. 

According to World Health Organization, the emotional abnormality, namely major 

depressive disorder is predicted to become the leading cause of disability by 2030 for 

around 20 percent of the population over the course of life [2]. Automated analysis and 

recognition of emotions can help understand various neurodevelopment disorders such 

as major depressive disorder and autism. Emotions are described using two popular 

dimensions, namely valence and arousal. The valence expresses the amount of negative 

and positive felt by the subject, and arousal characterizes the emotion intensity [3]. 

Emotions are quantified from various vital parameters such as Electrodermal activity 

(EDA), Blood Pressure (BP), breathing, Electroencephalograms (EEG), 
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Electromyograms (EMG), and Electro-cardiograms (ECG). These methods have 

attracted more attention since the measurements can be quantified, and they cannot be 

easily controlled. Among the vital signals, EDA measurements are simple and 

convenient to use as wearable devices [4].  

EDA refers to variation in electrical properties of skin, which is strongly correlated 

with eccrine sweat gland activity of the autonomic nervous system. Unlike other 

physiological signals, EDA signals are free from parasympathetic aspects of the 

autonomic nervous system. However, the dynamics and morphological characteristics of 

EDA signals are complex and exhibit inter-subject and intra-subject variability. EDA 

signal primarily contains two components, namely tonic and phasic. Tonic component, 

slow variation of skin conductance, or Skin Conductance Level (SCL) and phasic 

component, relatively fast variation of skin conductance, or Skin Conductance 

Responses (SCR). The algorithm, called the convex optimization approach (cvxEDA), 

gives better results for decomposing EDA at different noise levels [5].  

This study explores the feasibility of modified Hjorth features to recognize the 

valence and arousal dimensions in EDA signals. 

2. Materials and methods 

The proposed methodology for analyzing EDA signal using modified Hjorth parameters 

is pictorially represented in Figure 1. 

2.1. Database 

The EDA signals are collected from online public DEAP database for the analysis. The 

database it contains 48 channels of multiple physiological signals obtained from 32 

subjects, each 48-minute length, and sampled at 128 Hz. The signals are acquired from 

the subjects while watching 40 different audio-visual stimuli of one-minute length under 

the well-defined protocol [6].   

2.2. Feature extraction 

The EDA signals are decomposed into SCR and SCL using cvxEDA algorithm and the 

modified Hjorth descriptors, namely activity, mobility, complexity, chaos, and hazard, 

are extracted. The mathematical expressions are given below [7],[8]: 

Activity (AC): It is a measure of the average of the squared differences from the 

amplitude of the signal [7]. It can be mathematically expressed as:  

� �� �2N

n 1
AC  x n µ N

�
� ��  (1) 

Where N represents thelength of signal � �x n  and μ denotes the mean of � �x n  

Mobility (MO): is the ratio of the variance of the first derivative of the signal and 

the signal [7]. The mobility is given as: 

� �� � � �� �MO AC x' n AC x n�  (2) 

Where � �x' n represents first-order differentiation of signal � �x n . 

 Complexity (CO): It measures the change in the frequency of the signal and 

indicates how the shape of the signal is similar to pure sinewave [7]. It is given by:  
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� �� � � �� �CO MO x' n MO x n�  (3) 

 Chaos (CH): It is given as the ratio between the CO of the time series derivative 

and the CO of the series itself [8]. It is expressed as: 

� �� � � �� �CH CO x' n CO x n�  (4) 

         Hazard (HZ): It is given as the ratio between the CH of the time series derivative 

and the CH of the series itself [8]. It can be mathematically expressed as: 

� �� � � �� �HZ CH x' n CH x n�  (5) 

Figure 1. Block diagram of the proposed methodology 

 

Further, statistical analysis has been performed to know the significance of features 

for differentiating arousal and valence dimensions 

2.3. Classification 

The extracted features are fed to the four non-parametric classifiers, namely k-Nearest 

Neighbor (kNN), Support Vector Machine (SVM), Random Forest (RF), and Rotation 

Forest (RoF) classifiers. The kNN determines k objects nearest to the test object in the 

training data and assigns a class based on the neighbors. To distinguish between two 

classes, SVM uses a discriminating hyperplane. RF takes averages of the multiple 

decision tree predictions for making decisions. RoF divides the given set of features into 

various subsets to extract principal components. The new features for a decision tree are 

generated by carrying out the same rotations. The performance metrics, namely 

Accuracy (Acc), Precision (Prec), Recall (Rec), and F-measure (F-m) are evaluated from 

the classifiers [9].  

3. Results and Discussion 

The representative EDA signals for the dominant arousal, neutral arousal, positive 

valence, and negative valence classes are shown in Figure 2. It is observed that across 

the subjects, the amplitude and frequency of the signals are different. These differences 

are dependent on the subject and are attributed to multiple parameters, such as per-gland 

sweat, density, distribution, and size of sweat gland. Large fluctuations are seen in some 

subjects. However, it is not observed in all the cases. This may be due to anthropometric 

variations and distribution of sweat glands. Increasing trend in amplitude is observed in 

Figure 2 (b). It might be attributed to continuous activation of sweat glands due to 

emotional stimuli. Higher frequency content is observed in Figure 2 (c).  

The representative SCR component for the dominant arousal, neutral, positive, and 

negative valence classes are shown in Figure 3. It is observed that the subtle variations 

in conductance are higher in positive valence and arousal. It may be attributed due to 
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high sweat gland activity triggered by postganglionic sudomotor fibers. It is also seen 

that the conductance is low for neutral and negative valence. For dominant arousal and 

positive valence, a positive rise in amplitude is observed along with fluctuations, whereas 

minimal and limited fluctuations are observed in the neutral and negative valence. 

   
(a) (b) (c) (d) 

Figure 2. The Representative EDA signal of a subject in (a) dominant arousal, (b) neutral arousal, (c) 
positive valence, and (d) negative valence emotional states 

    
(a) (b) (c) (d) 

Figure 3. The Representative SCR signal of a subject in (a) dominant arousal, (b) neutral arousal, (c) positive 
valence, and (d) negative valence emotional states 

The representative SCL component for the dominant arousal, neutral arousal, 

positive valence, and negative valence classes are shown in Figure 4. Few fluctuations 

are observed in positive valence and arousal when compared to neutral and negative 

valence. It is also observed that the SCR conductance varies faster than the SCL, and the 

conductance is relatively higher for the SCR than the SCL. 

    
(a) (b) (c) (d) 

Figure 4. The representative SCL signal of a subject in (a) dominant arousal, (b) neutral arousal, (c) 

positive valence, and (d) negative valence emotional states 

The statistical significance of modified Hjorth parameters for valence and arousal 

dimensions of SCR and SCL are calculated using the Wilcoxon rank-sum test. It is 

observed that the features, namely activity, and mobility are significant (p < 0.05) in 

discriminating the valence dimension using SCR. The features, namely activity, mobility, 

complexity, chaos, and hazard, are significant (p < 0.05) in differentiating the valence 

dimension using SCL. 

The extracted modified Hjorth parameters are fed to four non-parametric classifiers, 

namely, RF, kNN, SVM, and RoF. The classification efficiency of the computed features 

is shown in Table 2 and Table 3. It is found that the RoF yields the highest accuracy of 

63.28% and 53.82% for classifying arousal and valence dimension respectively, in SCL. 

Table 3 represents the classification performance of SCR. RoF yields the highest 

accuracy of 63.04% and 53.90% for classifying arousal and valence dimensions.  
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Table 1. The performance classification [%] of SCL features with various non-parametric classifiers  

Table 2. The performance classification [%] of SCR features with various non-parametric classifiers 

4. Conclusion 

This work aims to analyze modified Hjorth features performance to classify valence and 

arousal dimensions in EDA and compare its performance using non-parametric 

classifiers. The results demonstrate that the Hjorth features extracted in the time-domain 

can classify the arousal and valence dimensions of EDA. The features obtained are 

statistically significant in differentiating valence dimension. The combination of 

modified Hjorth features and RoF is most accurate in classifying the arousal and valence 

dimensions. The methodology adopted in this work could well be extended to larger data 

samples. 
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Classif
ier 

SCL 
Valence Arousal 

Acc Prec Rec F-m Acc Prec Rec F-m 
RF 49.76 49.30 49.80 49.54 55.00 51.30 55.00 53.08 

kNN 46.40 46.40 46.40 46.40 46.90 47.40 47.00 47.19 

SVM 51.40 49.50 51.40 50.43 61.79 50.90 61.80 55.82 

RoF 53.82 52.30 53.80 53.03 63.28 76.80 63.30 69.39 

Classif
ier 

SCR 
Valence Arousal 

Acc Prec Rec F-m Acc Prec Rec F-m 
RF 49.76 49.40 49.80 49.59 60.15 57.00 60.20 58.55 

kNN 51.48 51.40 51.50 51.44 56.25 56.30 56.30 56.30 

SVM 53.43 48.50 53.40 50.83 63.04 39.80 63.00 48.78 

RoF 53.90 59.80 53.90 56.69 63.04 39.80 63.00 48.78 
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