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Abstract. Acute kidney injury (AKI) is a common and potentially life-threatening 
condition, which often occurs in the intensive care unit. We propose a machine 

learning model based on recurrent neural networks to continuously predict AKI. We 

internally validated its predictive performance, both in terms of discrimination and 
calibration, and assessed its interpretability. Our model achieved good 

discrimination (AUC 0.80-0.94). Such a continuous model can support clinicians to 
promptly recognize and treat AKI patients and may improve their outcomes. 
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1. Introduction 

Acute kidney injury (AKI) is a common and potentially life-threatening condition [1]. 

Clinically AKI detection uses serum creatinine increase as a marker of an acute decline 

in renal function. There is a lag of such an increase behind the renal injury, which results 

in delayed diagnosis and therefore attenuates the opportunity for early successful 

treatment [2]. Preventative alerts generated by medical prognosis can empower 

clinicians to act before a major clinical decline, improve care outcomes and optimize the 

use of resources [3]. As AKI occurrence in the Intensive Care Unit (ICU) is particularly 

high and often exceeds 50% [1], prediction of AKI in the ICU is of high relevance. 

Notably, to detect AKI, intensivists need to continuously monitor vital signs and 

laboratory measurements over time since patients’ conditions may rapidly change [4]. 

The field of prognosis in nephrology has seen a rapid growth in machine learning 

applications. Machine learning might aid such continuous monitoring via a continuous 

prediction, meaning continuously updating the prediction of patient risk as more data 

become available over time. Recurrent neural networks are machine learning models 

particularly effective with temporal data, but they lack transparency (i.e. are often “black-

boxes”), which can be a major obstacle to their practical application. In the clinical 

environment, models should not only make good predictions but also be interpretable [5]. 

To address the above-mentioned problems, we focus on the following research 

question: How well can we continuously predict AKI in the ICU setting with an 
interpretable machine learning model? To answer such research question, we developed 

a machine learning model based on Long-Short term memory (LSTM), which is a type 

of recurrent neural networks [6]. We internally validated its predictive performance, both 

in terms of discrimination and calibration, and assessed its interpretability. 
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2. Method 

2.1. Data and population 

We used data from the MIMIC dataset, which contains de-identified medical information 

for approximately sixty thousand patient admissions to the ICUs at Beth Israel Medical 

Center between 2001 and 2012 [7]. We included patients with at least one measurement 

of serum creatinine or urine output, who were older than 18 years old, and whose length 

of stay in the ICU was at least 48 hours. AKI was defined according to the KDIGO 

guidelines [8]. We considered at most 35 days for each ICU stays (as 95% of ICU stays 

were shorter than 35 days): for those stays that exceeded 35 days, only records for the 

last 35 days were used for analysis. The final dataset consisted of 47,751 ICU stays of 

34,516 unique patients. 

2.2. Data preprocessing 

We selected 35 variables previously indicated as potentially relevant [9, 10], excluding 

the ones with over 50% of missing values. The selected variables are listed in Table A1 

and A2 of the supplementary material,2 and included static (age, gender, other patients’ 

characteristics, and administrative information) and temporal variables (physiological 

variables, laboratory measurements, and interventions). We did not impute missing 

values for the variables selected, i.e. we filled them with zeros. The missing labels were 

carried forward with the limit of four days to prevent using a label too old to be 

representative of the patient condition [10]. The remaining missing labels were filled 

with zeros, similarly to the input variables. After capping the extreme values at the first 

and 99th percentile, we normalized all numerical variables to the [0, 1] interval. 

Measurements of temporal variables were made at irregular intervals and the number 

of measurements varied from one ICU stay to another. Therefore, we resampled such 

measurements at regular intervals of six hours. Each day was broken into four six-hour 

periods, and measurements within the same six-hour period were aggregated, using the 

mean for (continuous) numeric variables and the maximum value for categorical ones. 

2.3. Model development 

Our model for continuous AKI prediction was based on an LSTM (supplementary 

material, Figure A1).2 We chose an LSTM as it is known to perform well with temporal 

data [11], has been successfully applied to AKI prediction [9], and allows continuous 

prediction. The first layer was a fully-connected embedding layer to compress the high-

dimensional and sparse input variables into a lower-dimensional continuous 

representation, easier to manipulate by the model. The embedding layer provides the data 

to the three bidirectional LSTM layers, followed by another fully-connected layer to 

aggregate bidirectional output, and a dropout layer. The final prediction layer estimates 

the probability of the patient to develop AKI. The optimization function was the Binary 

Cross-Entropy (Bernoulli log-likelihood), and we used the Adam optimizer [12]. 

We compared the performance of our model with three prediction models that 

proved to be effective to predict AKI [13]: logistic regression, gradient boosted 

trees [14], and random forest [15]. The same preprocessing procedure described above 

 
2 https://osf.io/sjtfq, last access March 2 2021. 
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was applied to these models, with two differences. First, we ‘flattened’ our data over 

time by representing the values of the same input variables at every time point as different 

variables. Second, these models cannot provide a continuous prediction. In order to 

compare their predictive performance with the LSTM, the time of the prediction was 48 

hours ahead of the last time point, for the ICU stays with no AKI. For stays with AKI, 

the time of prediction was 48 hours before the onset of AKI (i.e. before AKI occurs). 

2.4. Internal validation, performance measure, and interpretability assessment 

For the logistic regression, gradient boosted trees, and random forest, the data were 

randomly split into 90% training and 10% test sets. For the LSTM, the dataset was split 

into 80% training, 10% validation, and 10% test sets. For a fair comparison, we used the 

same test dataset used for each model. The same training set was also used but for the 

LSTM a validation set was retained. 

We measured discrimination with the area under the receiver operating curve (AUC) 

and the Brier score (the mean squared error of the predictions). We assessed calibration 

with calibration curves. The interpretability of the LSTM was measured through the 

integrated gradients method [16][16]. 

3. Results 

Table 1 outlines the discrimination (AUC and Brier score) of the LSTM and the other 

models. The continuous LSTM achieved the best (highest) AUC and (lowest) Brier 

score. Before onset, random forest showed the highest AUC, while the lowest Brier score 

was achieved by the gradient boosted trees. The before-onset LSTM performed worst in 

AUC, but it was still above 0.8. The calibration curves of the models are available in the 

supplementary material.2 Random forest achieved the best calibration, the two LSTMs 

the worst. The feature importance of the LSTM is depicted in Figure 1. Creatinine is the 

major harmful risk factor and urine output is the major protective risk factor. 

Table 1. AUC and Brier scores of the LSTM and the baseline models 

Time of prediction Model AUC Brier score 

Before AKI onset 

Random forest   0.93 0.128 
Gradient boosted trees 0.92 0.108 

Logistic regression 0.90 0.206 

LSTM               0.83 0.202 
Continuous         LSTM               0.94 0.101 

 

Figure 1. Features importance of the LSTM model. 
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4. Discussion 

4.1. Main findings 

The LSTM, the only continuous model, showed the best discrimination. Before the AKI 

onset, random forest achieved the highest predictive performance, but the LSTM yielded 

lower, yet competitive, results. Despite a low Brier score, the calibration curves for both 

the before-onset and continuous LSTMs showed room for improvement. Creatinine is 

the major harmful risk factor and urine output is the major protective risk factor. 

4.2. Strengths and limitations 

The strength of this study is proposing a continuous and interpretable model to predict 

AKI, applying a complete evaluation that includes discrimination, calibration, and 

interpretability. Our continuous model achieved an AUC of 0.94. Our study is performed 

on a publicly available dataset to foster reproducibility and comparison with future 

models. Our code is also openly available at github.com/mapo89/continuous-aki-predict. 

There are some points of improvement. First, we did not include comorbidities that 

can be relevant for AKI. Typically, comorbidities are registered at the end of the hospital 

admission, so to avoid leaking information from the future, we excluded them. Second, 

missing values belong to the temporal variables and they likely represent measurements 

not performed. Such missing values are not missing at random, as in clinical practice 

tests are ordered based on existing observations and expectations of the clinicians. Using 

imputation methods such as the selection and the pattern-mixture model [17] could 

improve the predictive performance and reduce the risk of bias. Third, the interpretability 

of neural networks is not trivial. Feature importance, derived by averaging the attributes 

of all instances, explains which variables contributed to the predictions. However, 

averaging is prone to the offset of the values due to the variance on the instance level, 

therefore such importance is less reliable than the one derived at a model level. To better 

understand interpretability at the levels of layers and neurons more effort is required. 

4.3. Related work 

Multiple machine learning models for the AKI prediction in the ICU have been proposed. 

Zimmerman et al. [18] used a selection of variables from the MIMIC dataset to predict 

the levels of creatinine on the second and third days of ICU admission, as well as AKI 

thereafter. Logistic regression, random forest, and neural networks were used, with the 

highest AUC of 0.78. Wang et al. [19] predicted AKI in ICU with gradient boosted trees 

24 hours and 48 hours before onset (AUC 0.80 and 0.77, respectively). Only two studies 

provide a model for the continuous prediction of AKI. Tomašev et. al. [10] focused on 

hospital patients and exploited a recurrent neural network. Their model provided an AUC 

of 0.92. Pan et al. [9] developed a continuous model for predicting AKI in the ICU, using 

the MIMIC dataset (AUC 0.89). Our model’s discrimination was comparable to these 

models, while only us and Tomašev et al. assessed calibration. 

However, all the above works focused on predictive performance and did not study 

the interpretability of the models. Freitas et al [20] discuss the validation results of an 

AKI prediction model for cardiac patients, based on random forest. They assessed 

interpretability by means of feature importance, SHAP [21], and LIME [22]. Song et al 

[23] developed a model to predict AKI on hospital data 48 hours before its onset and 
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achieved 0.81-0.87 AUC for different AKI stages. They used SHAP values for 

interpretability. Gong et al [24] compared several algorithms with the highest AUC of 

0.77 for prediction 48 hours before AKI onset. For interpretability, they applied feature 

importance and SHAP. Neither of these models provides continuous AKI prediction. 

Notably, few continuous models have been proposed, and none studied interpretability. 

5. Conclusion 

This study provided a model for the continuous prediction of AKI in the ICU. Predictive 

performance was better than non-continuous models and interpretability was inspected. 

Such a continuous model can support clinicians to promptly recognize and treat 

deteriorating AKI patients and may improve their outcomes. 
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