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Abstract. Clinical trials are carried out to prove the safety and effectiveness of new 
interventions and therapies. As diseases and their causes continue to become more 

specific, so do inclusion and exclusion criteria for trials. Patient recruitment has 

always been a challenge, but with medical progress, it becomes increasingly difficult 
to achieve the necessary number of cases. In Germany, the Medical Informatics 

Initiative is planning to use the central application and registration office to conduct 

feasibility analyses at an early stage and thus to identify suitable project partners. 
This approach aims to technically adapt/integrate the envisioned infrastructure in 

such a way that it can be used for trial case number estimation for the planning of 

multicenter clinical trials. We have developed a fully automated solution called 
APERITIF that can identify the number of eligible patients based on free-text 

eligibility criteria, taking into account the MII core data set and based on the FHIR 

standard. The evaluation showed a precision of 62.64 % for inclusion criteria and a 
precision of 66.45 % for exclusion criteria. 
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1. Introduction 

Clinical trials are essential for verifying the safety and effectiveness of new therapies and 

pharmaceuticals. A sufficient number of suitable subjects is critical for the conduct of a 

study [1]. However, only a minority of clinical studies achieve their recruitment goal in 

the scheduled time [2]. Finding suitable participants who meet the increasingly specific 

eligibility criteria of a study is time-consuming and personnel-intensive for the local 

study team. Patient recruitment, especially in research on rare diseases, where the number 

of patients is limited, requires multi-center clinical trials to achieve the necessary case 

numbers. Identifying project partners providing suitable patients is an arduous initial task. 

The Medical Informatics Initiative (MII) develops the German central application and 
registration office (ZARS), a platform to perform feasibility queries and data retrievals. 

This platform will improve the patient recruitment process due to the eased identification 

of potential research collaborations by performing feasibility queries over all MII sites. 

The inquiries and the resulting data exchange are based on harmonized and consented 
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core data sets, the MII Kerndatensätze [3]. We propose APERITIF [4], an approach to 

streamline the design of multi-center trials based on the ZARS. 

2. Methods 

2.1. Core Data Set of MII 

The project's main focus is to establish data integration centers at the local university 

hospitals in Germany to enable a federated data exchange among these centers. Therefore, 

the core data set of the MII was designed [3]. The whole data set contains several basic 

modules: Diagnoses, Procedures, Medication, Encounter, Observations, Demographics, 

and Person. Each module includes commonly required data elements for clinical care 

based on consented FHIR profiles. 

2.2.  FHIR, Ontoserver, and CQL 

Digital healthcare requires standards such as Fast Healthcare Interoperability Resources 

(FHIR) to ensure interoperability. The basic idea of FHIR is to model concepts from the 

clinical domain with the goal to facilitate interoperability. Supporting FHIR, the 

Ontoserver provides services to integrate terminologies and code systems into digital 

healthcare solutions, e.g. performing code requests for medical concepts [5]. Using the 

medical terminology SNOMED CT, the Ontoserver is also able to process Expression 

Constraint Language (ECL) to request information about subconcepts, etc. As a query 

language for clinical contexts, Clinical Quality Language (CQL) [6] supports several 

data models including FHIR and provides a wide range of elements such as the 

integration of code systems, value sets, or complex data types such as codes [6]. 

3. Results 

3.1. Data Analysis 

In a first step, we analyzed 552 eligibility criteria from 27 randomly chosen studies. The 

identified concepts were assigned to different classes and groups oriented to the Semantic 

Network of Unified Medical Language System (UMLS), utilized by Luo et al. [7]. The 

most commonly classes that should be considered for implementation were ”Disease, 

Symptom or Sign”, “Therapy or Surgery”, “Medication”, “Diagnostic or Lab Result”, 

“Age”, and “Gender”. Their proportion was about 84 % of all identified concepts. In the 

next step, the aim was to map corresponding data elements within the core data set of the 

MII. The core data set was able to cover about 99 % of our identified concepts. Missing 

data elements could be detected for concepts such as “Life Expectancy” or “Organ or 

Tissue Status”. 

3.2.  Implementation of APERITIF 

Since the developed framework for implementing automated case number estimation 

based on the MII ZARS is intended to achieve a maximum degree of automation, the 
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study criteria from national and international study registries are used. For studies from 

ClinicalTrials.gov, we implemented data acquisition via Representational State Transfer 

(REST) as well as importing data from a downloaded Extensible Markup Language 

(XML) file. All other study information has to be imported from a text file containing 

free-text eligibility criteria of a study in the English language. 

 
Figure 1. Schematic overview of APERITIF’ s architecture showing input and output formats. 

Figure 1 illustrates the architecture of the program APERITIF. In a first step, the 

imported free-text eligibility criteria of clinical trials have to be converted into structured 

data using natural language processing (NLP) methods such as tokenization or, 

lemmatization provided by Apache OpenNLP [8]. We also integrated MetaMapLite 

(version 3.6.2rc5) [9], a UMLS based entity recognition including negation detection. 

Therefore, entities such as diagnoses, procedures, laboratory results, and medications can 

be categorized by their UMLS semantic types. In a second step, we collect the terms of 

the identified entities to perform a term search for SNOMED CT and Logical 

Observation Identifiers Names and Codes (LOINC) codes with the Ontoserver. Besides, 

subconcepts of single SNOMED CT concepts are extracted using ECL. For each 

criterion, the junctions “and” and “or” are extracted via regular expressions to connect 

several entities of a criterion in the query. For laboratory results, we also extract the 

laboratory value, the laboratory unit, and the comparator using regular expressions. The 

demographic data gender, minimum, and maximum age of a patient are extracted the 

same way. As the core data set has a FHIR specification, we chose CQL as query 

language supporting this standard and to overcome the limitations of FHIR search [10, 

11]. With the help of the extracted information (step 3) and the corresponding data 

elements of the core data set (step 4), the CQL query is generated and finally sent to a 

Blaze instance of version 0.9.0 [12] (step 5), a FHIR server that can process CQL queries. 

The whole implementation is based on FHIR R4 and HAPI version 4.2.0 [13]. 

3.3. Qualitative Evaluation 

We assessed 20 studies with 4 study centers of the campus Lübeck in Germany. All 

extracted information of a CQL query was translated in a comprehensible form 

(negations, identified entities, junctions of a criterion). The study nurses labeled the 

extracted criteria and the identified entity types (e.g. “diagnosis” for gastric cancer) as 
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“correct” or “false”. 91 of 167 inclusion criteria contained medical information that was 

relevant for query generation. 57 of these 91 inclusion criteria were labeled as “correct” 

(62.64 %). 152 exclusion criteria contained medical concepts (total 261 exclusion criteria 

overall studies). 101 were labeled as “correct“ (66.45 %). Major faults were 

underspecified entities, e.g. “excision” instead of “partial mesorectal excision” (31.46 %), 

wrong contexts, e.g. patients with MRI but diagnosis in this context was missing 

(22.48 %), and incorrect junctions, e.g. “and” instead of “or” (15.73 %). The extracted 

demographic data were correct for all tested studies. The identification of entity types 

resulted in a precision of 89.00 % for inclusion and 93.17 % for exclusion criteria. 

3.4. Quantitative Evaluation 

Adequate test data for the core data set is not yet available. Therefore, we manually 

generated test data for 20 studies to perform a quantitative evaluation of APERITIF. For 

each test patient of a study, a JavaScript Object Notation (JSON) file containing the 

required FHIR resources such as conditions or procedures was generated and uploaded 

using blazectl, a command line tool for Blaze. For each test study, at least one patient 

fulfilled the required information of the CQL query and one did not to check whether 

junctions and negations work correctly. Ten studies passed our instance data test scenario. 

Four queries resulted in a parsing exception and six queries contained contradictions. 

4. Discussion 

The qualitative evaluation showed that exclusion criteria performed better than inclusion 

criteria, which often contain more complex elements. During implementation and 

evaluation, MetaMapLite showed performance issues with complex criteria. The next 

step is to change the entity recognition to methods of the emerging field of machine 

learning [14]. One major impediment preventing the use of pre-trained networks is the 

missing support of UMLS, which is needed for the query generation in our approach. 

The new methods could allow the detection of temporal interrelations, which cannot be 

identified using MetaMapLite. Due to time constraints, the evaluation of missing 

information and extracted codes was out of the scope of this work. 

The quantitative evaluation showed contradictions within the queries, which 

resulted in failing the expected test outcome for six studies. The reasons were errors in 

the automatic negation detection in MetaMapLite. To resolve the contradictions, the 

exclusion and inclusion criteria were compared and possible duplications were dropped 

from the query. This modification is less restrictive than removing codes from inclusion 

criteria since eligible patients would be excluded from recruitment. After the cropping 

step, only one contradiction remained for a study between entities of inclusion criteria. 

Upon queries with a high number of entities and corresponding codes, technical issues 

of the used FHIR store were encountered, especially by processing laboratory criteria. 

At this time, a different formulation of laboratory entities is technically not possible. It 

would require the implementation of further features in Blaze. Unfortunately, it was 

necessary to reduce the number of laboratory statements per entity to work around these 

issues, albeit information gets lost.   
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5. Conclusion 

Our approach extracts medical and demographic data from free-text eligibility criteria of 

a study using NLP methods. The extracted information is mapped to the corresponding 

data elements of the core data set of the MII. Based on the processed information, a CQL-

query is generated to represent the criteria. Based on free-text eligibility criteria, 

APERITIF enables estimating the number of potentially eligible patients for planning 

multi-center trials. With the chosen tools such as the Ontoserver for code extraction and 

CQL in combination with the Blaze server, we successfully implemented a promising 

application that can flexibly be adapted to possible central MII developments. 
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