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Abstract. Data integration is an increasing need in medical informatics projects like
the EU Precise4Q project, in which multidisciplinary semantically and syntactically
heterogeneous data across several institutions needs to be integrated. Besides, data
sharing agreements often allow a virtual data integration only, because data cannot
leave the source repository. We propose a data harmonization infrastructure in
which data is virtually integrated by sharing a semantically rich common data
representation that allows their homogeneous querying. This common data model
integrates content from well-known biomedical ontologies like SNOMED CT by
using the BTL2 upper level ontology, and is imported into a graph database. We
successfully integrated three datasets and made some test queries showing the
feasibility of the approach.
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1. Introduction

Despite ethical and technological challenges, clinical data sharing is pursued with
increasing efforts to improve research and clinical outcomes. Here we focus on the
technological challenges regarding the syntactic and semantic integration of data from
multidisciplinary sources. Such data is usually heterogeneously structured (from free text
to structured data) and might use different languages. In addition, meaning discrepancies
might exist across institutions, which requires syntactic and semantic harmonization.

This is the case of the EU Precise4Q project [1] on stroke management, for which
we are implementing the data harmonization infrastructure. Most existing clinical data
architectures load data into a common integrated repository within an institution [2].
However, in collaborative, cross-institutional projects as in Precise4Q, institutions’ data
sharing agreements do not allow data to leave their source repositories. This requires
federated architectures in which several repositories are integrated virtually by sharing a
common data representation layer, which allows their homogeneous querying. The
proposed data harmonization architecture has three main components: (1) semantic
common data model (CDM); (2) graph-based repository and a (3) semantic query system.
This work focuses on describing (1) and (2).

We depart from anonymized and quality assured data extracted from each source
repository. This data is then transformed into a semantically rich representation and
harmonized. While multiple data modelling standards and proposals exist to integrate
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and share data, they still fail in providing semantically rich representations [3]. The
semantic CDM proposed integrates content from well-known biomedical ontologies like
SNOMED CT (SCT) by using a biomedical top-level ontology. The CDM is agnostic to
existing clinical modelling representations (e.g. i2b2, OMOP CDM, HL7 FHIR, etc.) and
can be extended to represent specific data modelling use cases in a standardized way.

The model consists of a collection of OWL ontologies [4], which are imported into
a graph database as a labelled property graph (LPG) for performance reasons.

In the following we describe the main components of the semantic data
harmonization infrastructure and the modelling and integration of some data samples into
the semantic repository.

2. Materials and Methods
2.1. Semantic Common data model

The integration of heterogeneous data requires of a common data model (CDM) to
provide a uniform and unambiguous representation. Semantic integration is the highest
integration level and aims to preserve “the detail, uncertainty, and above all the context
of the data involved” [5]. Nowadays the vast majority of CDMs are not able to provide
this level of data integration. Examples of CDMs for clinical data are openEHR RM [6],
HL7 FHIR resources [7] or the OMOP CDM [8] from the OHDSI community. In the
past years, efforts have been made to improve their semantic capabilities.

Current semantic integration approaches are based on ontologies. As mentioned in
[3], well-designed ontologies, which focus on logical consistency and represent concepts
within a hierarchy are useful for the creation of clinical data representations that are
semantically rich, unambiguous, and not dependent on specific CDMs.

The proposed ontology infrastructure follows the semantic harmonization principles
from Cunningham et al. [9]. It uses the axiomatically rich top-level ontology BTL2 [10]
as reference harmonization framework to allow the unambiguous integration of domain-
specific knowledge. The CDM is agnostic to existing clinical data modelling
specifications and includes both information (e.g. temporal context, provenance, etc.)
and clinical domain concepts (e.g. “stroke”, “obesity”, etc.). SNOMED CT [11] is our
ontology of choice for clinical domain modelling, given its wide coverage of the
biomedical domain and its formalization degree that allows logical inference. For each
data modelling use case, a local semantic data model is built, with the domain knowledge
and by following CDM constraints. Figure 1 describes the ontology infrastructure.
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Figure 1. Ontology harmonization infrastructure. In the middle the semantic CDM that uses BTL2 to
integrate clinical and information entities [12]. In grey, the partial harmonization of SCT main concepts and
attributes with BTL2 [13]. In green SCT modules with use case concepts. At the bottom in blue, local
semantic CDMs which comply with the semantic CDM restrictions and include use case domain knowledge.
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The central entity of the CDM is the clinical statement that represents documented
medical facts (observation, judgment or assessment about a certain patient aspect) as
result of a procedure. Other entities such the subject, the provider of information or the
healthcare process provide context to the documented medical fact (see Figure 2).
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Figure 2. Excerpt of two schemas for clinical statement modelling. Left: a medical fact is described by two
concepts describing what is observed and its result respectively. Right: a medical fact is described by one
concept which describes the result of the observation / assessment. Classes in blue represent medical domain
concepts (e.g. obese clinical finding in SCT as ClinicalSituation, weight and body mass assessment
procedure in SCT as HealthcareProcess). Information entity classes in yellow.

2.2. Graph-based database

Graph databases have gained popularity given their performance with complex and
interconnected large amounts of data. There are two main graph models, the W3C
standard RDF [14] and Labelled Property Graph (LPG). The RDF model uses
<subject,predicate,object> triples while the LPG model consists of nodes, relationships
and properties. The RDF model provides some advantages over LPGs as data reasoning.
However, its adoption outside the academic field is limited due to performance reasons
[15]. We have used the Neo4j database [16], which implements the LPG model and is
one of the most used graph databases [17]. In order to get RDF-like advantages and
performance from Neo4j:
1) For each dataset, a local semantic data model is built by following CDM constraints
2) Mappings between data and local semantic data model entities are defined and
RDF instances are created accordingly
3) Data reasoning infers new statements. Transitivity along concept hierarchies is
applied to make for every resource, rdf:type together with its superclasses explicit.
4) Ontology population into Neo4j by translating OWL/RDF into LPG with
Neosemantics [18]. It imports a simplified ontology version in the graph and
enables queries with taxonomic reasoning.
5) Instance data population into Neo4j with [18] and by following RDF to LPG
translation rules [19].

3. Results

The semantic harmonization process (modelling and integration) uses data excerpts from
stroke patients at a rehabilitation institute provided as anonymized CSV files.

3.1. Data modelling

For representing data according to the semantic CDM. a local semantic data model is
built for each dataset with the specific domain knowledge, supported by domain experts
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and data owners, and following the CDM constraints. Whenever possible, concepts from
SCT are used for representing domain knowledge. If no concept exists neither in SCT
nor in any other clinical vocabulary (e.g. LOINC, ICD, etc.) a new one is crated as a
child concept of an existing one of the local semantic data model. E.g. at one dataset,
results from psychometric orientation tests are classified in three types: personal, spatial
and temporal orientation. SCT provides only 405017007 |Ability to identify person, place,
and time (observable entity)|. Thus, three subconcepts are created and the SCT
orientation concept inherits from each one.

There are some complex modelling cases, such as the representation of the patients’
age of stroke onset, which could only represented by complex OWL definitions. Aware
of possible limitations but in favor of performance and functionality, we decided to
encapsulate the entire meaning in a concept similarly as SCT does with concepts like
170092006 | Age when first sat (observable entity)|. The new concept is placed under the
closest standardized one in the ontology. Figure 3 shows an excerpt of the modelling of
the result of the Stroop word test according to semantic CDM.
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Figure 3. Excerpt local semantic data model for representing the result of the cognitive “Stroop word test”
according to CDM (see Fig.3 (left)). In blue SCT concepts. In green, literal values to be instantiated

DateTime

3.2. Data integration

Once local semantic models are built for each dataset and steps 1) to 5) performed

(see section 2.2), they are instantiated and loaded into the graph database. In case datasets
have similar data heterogeneously represented, transformation rules informed by domain
experts and data owners are implemented and the corresponding data instances created.
E.g. body mass index in one dataset vs. obesity = (yes/no) in another one.
When having distinct datasets about same patients, one of the benefits of the graph-based
representation is that all data is represented in one graph and thus, queries including
aspects from them can be executed in a more efficient and intuitive way as in a classical
relational database. In addition, taxonomic reasoning allows queries to be performed at
different granularity levels: E.g. retrieve for all patients whose orientation ability was
initially evaluated, the number of orientation tasks they performed in the rehabilitation
therapy. This query involves two different datasets and taxonomic reasoning for getting
all orientation assessments (see section 3.1).

4. Discussion and Conclusion

A semantic data harmonization infrastructure that can be implemented as a federated
architecture has been proposed. It consists of (1) a semantic CDM, (2) a graph-based
database and a (3) semantic query system. This work focuses on (1) and (2). For each
dataset at a source site, a local semantic data model is built supported by the data experts
and following CDM constraints. The semantic CDM includes a collection of
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standardized ontologies under a top-level ontology for harmonization. This CDM is
agnostic regarding existing standardized models, focusing on data meaning
representation and acting as their common model to allow data transformations among
them. At each data site the local semantic model is instantiated and loaded into a graph
database according to the steps in section 2.2. A direct benefit of this semantic data
enrichment and its representation as a graph is the provision of a harmonized data
representation across the heterogeneous data sites. In addition, queries including aspects
from several datasets can be executed in a more efficient and intuitive way as in classical
relational databases and exploit taxonomic reasoning. Neo4j with Cypher as query
language have proven useful. We are currently implementing a semantic query system
based on the proposed semantic CDM, customizable for each data integration scenario.
We have already harmonized and integrated three datasets into the graph database, what
shows the feasibility of the approach. The highest workload is the building of each local
semantic data model and the mapping definition, which requires both knowledge on the
data and the target data model. Nevertheless, once implemented it can be reused to import
new data and on the other hand, such tasks need support of domain experts and cannot
be fully automatized.
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