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Abstract. Background: Physical activity helps improve the overall quality of life. 

The correct execution of physical activity is crucial both in sports as well as disease 
prevention and rehabilitation. Little to no automated commodity solutions for 

automated analysis and feedback exist. Objectives: Validation of the Apple ARKit 

framework as a solution for automatic body tracking in daily physical exercises 
using the smartphones' built-in camera. Methods: We deliver insights into ARKit's 

body tracking accuracy through a lab experiment against the VICON system as Gold 

Standard. We provide further insights through case studies using apps built on 
ARKit. Results: ARKit exposes significant limitations in tracking the full range of 

motion in joints but accurately tracks the movement itself. Case studies show that 

applying it to measure the quantity of execution of exercises is possible. Conclusion: 
ARKit is a light-weight commodity solution for quantitative assessment of physical 

activity. Its limitations and possibilities in qualitative assessment need to be 

investigated further. 
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1. Introduction 

Regular physical exercise is known to be beneficial for the overall quality of life. It 

improves functional capacity and reduces long-term risks for diseases like Diabetes 

mellitus Type 2 and Alzheimer's while improving overall health, health-related aspects, 

and mood [1, 2, 3]. Physical exercise can also positively influence hemic and oncological 

diseases' treatment and rehabilitation by preventing muscular atrophy and improving the 

patients' mood [4, 5, 6]. However, the correct execution of physical exercise is essential. 

Wrong exercise execution can lead to biochemical stress, injuries, and osteoarthritis in 

the respective joints [7]. To avoid wrong movements, regular supervision of the 

exercising person by experienced personnel is crucial. Various systems have been 

developed and evaluated to allow a more profound analysis of human motion and detect 

problematic movements in exercises. These systems include optical, magnetic, inertial, 

or mechanic sensors to detect and measure different kinds of metrics about human body 

motion [8, 9]. Modern motion capture systems track indoor and outdoor activities with 

different accuracy based on the underlying technologies [10]. However, none of those 
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systems currently allows daily usage as they require custom hardware for tracking and 

often are connected to high costs.  

Many people track their daily lives with mobile devices like smartphones, -watches, 

and sleep or fitness trackers [11]. These devices are equipped with more advanced 

sensors such as camera systems, gyroscopes, accelerometers, and optical sensors. Also, 

the devices themselves are getting more powerful and allow resource-intensive 

applications, e.g., for on-device machine learning. These advances include powerful 

software applications to perform automatic detection of objects, among them the human 

body. Software frameworks for mobile devices like Apple ARKit2 or Vision3 or Google's 

Tensorflow Pose Estimation4 automatically detect the joints' positions through image 

recognition techniques. These positions can be used for further analysis and enable 

various new applications, e.g., in mobile games and healthcare. 

Using motion detection applications on mobile devices could add to the user's health, 

allowing quantitative analysis of physical activity. The application area is broad and 

includes prevention of injuries and sickness, progress, and aggravation tracking, e.g., in 

rehabilitation, during treatment, or as a motivation to be more active and exercise in 

general [11]. Mobile devices might be able to deliver a low-cost, commodity alternative 

to established solutions. Boulos et al. state that while many mobile applications for 

tracking physical activity have been developed, most of them rely on few sensor data. 

Used data is often limited to GPS and heart rate. Especially in the area of resistance 

exercises, personalized coaching applications are missing [12]. However, systems based 

on wearable sensors can recognize and count exercises [13], even without prior, exercise-

specific training [14]. Current research shows that approaches using Apple ARKit can 

track the lower extremities' motion [15]. A more detailed evaluation of the applicability 

of ARKit, including the upper extremity, is missing. The aim of this work is to evaluate 

the suitability and applicability of on-device motion tracking using Apple ARKit and 

give an outlook to their application in three different use cases: goalkeeper training, 

physiotherapy and resistance training, and golf.  

In all three use cases, complex motion needs to be tracked. If executed incorrectly, 

these exercises can overstress several joints and promote injuries. The usage of mobile 

motion capture to assess motion and detect incorrect movements could balance training, 

prevent injuries, and provide progress supervision. Existing approaches in goalkeeper 

training build on custom sensors to analyze motion [16]. In our approach, we rely on 

ARKit as an alternative approach using a commodity device (Case Study 1). Resistance 

training plays a substantial role in improving and maintaining physical strength and 

fitness, either during the prevention of diseases and injuries or physiotherapy. Research 

proves that active physical exercise is among the crucial factors in physiotherapy of 

common conditions, e.g., in chronic low back pain [17]. We design an algorithm to 

capture and assess body-weight exercises and provide individual feedback in a mobile 

coaching application in resistance training (Case Study 2). Golf consists of complex 

motion sequences (intra- and intermuscular) that require a high amount of coordination, 

flexibility, and strength, which needs to be practiced continuously to generate high 

performance. Even for professional golf trainers, an individual assessment of the golf 

swing and related exercises and tracking progress is challenging. Several solutions have 

been developed to support golf training. Existing solutions use different sensors attached 
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to the body and the golf club to measure motion [18, 19] or focus on camera-based 

techniques, like the Coach's Eye application5, which allows calculating joint angles in a 

single, selected video frame manually. We propose a more light-weight, automated 

approach by combining an optical sensor and a single Inertial Measurement Unit (IMU) 

sensor for qualitatively assessing motion in golf-related exercises (Case Study 3). 

2. Methods 

Within the scope of this paper, we aim at investigating two research questions: 

� RQ 1: Which accuracy does Apple ARKit provide in contrast to the VICON 

system? 

� RQ 2: What are potential use cases for an ARKit-based system? 

To answer RQ 1, we performed a lab experiment in which we compared motion data 

generated by Apple ARKit against the VICON system's motion data. To answer RQ 2, 

we are conducting several case studies in different health and exercise science areas, each 

of them consisting of a mobile prototype application running the ARKit framework.  

2.1. Suitability of ARKit for Motion Recognition and Tracking 

A total of 12 subjects participated in the experiment, 5 females and 7 males, all of good 

health without physical impairments. The participants' height ranged from 1.56m to 

1.96m and their weight from 52.2kg to 97.5kg. In the lab experiment, subjects had to 

perform 9 different exercises focusing on both the upper and lower extremities, including 

running on a treadmill at 3 different speeds, passing and catching a ball, jumping jacks, 

cuttings, and squats. All joint angles are calculated using Euler angles in 3 dimensions: 

x referring to flexion/extension, y referring to inversion/eversion, and z referring to the 

rotation. Both systems measured shoulder, elbow, neck, knee, and ankle angles. We 

calculated minimum, maximum, mean, standard deviation (SD), and range of motion 

(ROM) and compared the ARKit values against the VICON angles for all exercises.  

For the study setup, we used a 10-camera VICON setup with the full-body Plug-in 

Gait model provided by VICON Nexus6. For the recording with ARKit, we placed an 

iPad Pro 11" 2020 with LiDAR sensor on a tripod in front of the subject with a distance 

of 3m.  

2.2. Case Study 1: Recognition of Exercises in Goalkeeper Training 

In our first case study, we wanted to identify patterns specific for individual exercises, 

which is the baseline for further analysis of the motion. For this, we recorded 15 different 

exercises with ARKit and an additional camera, which served as the basis for labeling 

the data afterward. The exercises consisted of 6 dive variations, 5 catch variations, 2 

throw variations, and 2 kick variations. 4 goalkeepers were recorded. Their football 

trainer was supervising the recording sessions to guarantee the correct execution of the 

exercises. Through 10 session recordings in total, we created a dataset of 1050 single 

exercise executions mapped on the 15 exercises. We used machine learning techniques 

to train a classifier predicting the matching. We reduced the 6 different dive classes to 2 
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classes due to similarities in the execution as a preparation. Based on research by Ronao 

et al. [20], we applied an approach based on Convolutional Neural Networks (CNN). 

2.3. Case Study 2: Recognition of Body-Weight Exercises in Physiotherapy and 
Resistance Training using a Pose-based Approach 

In case study 2, we developed an algorithm to recognize and assess body-weight 

exercises using ARKit. The algorithm allows app users to record new exercises, store 

them in a database, detect correct exercise executions of stored exercises, detect incorrect 

repetitions, and provide individual feedback to the user on improving the motion. Due to 

the COVID-19 pandemic, an evaluation of the prototype application remains open.  

2.4. Case Study 3: Classification of Golf-Related Exercises 

As part of case study 3, we developed a system consisting of an ARKit-based mobile 

application prototype and an IMU sensor to measure motion, rotation, and acceleration 

in an exercise related to the golf swing. The camera is placed in front of the player. The 

IMU sensor is attached to the hip. The system automatically assesses the exercise 

execution compared to a reference recording. The automatic assessment is performed by 

a Dynamic Time Warping (DTW) algorithm, which compares the exercise data against 

the reference data and evaluates the distance between the compared time series. Through 

the DTW approach, we classify the executions and provide a grading. We recorded 

around 300 exercise executions, and a golf trainer assessed them to generate training data. 

A prototype was implemented, but the automatic assessment could not be qualitatively 

validated due to the ongoing COVID-19 pandemic. Through an online questionnaire, we 

gained insights into how golf trainers assessed the prototype's usefulness. 

3. Results 

3.1. Suitability of ARKit for Motion Recognition and Tracking 

The comparison of the Euler angles calculated by VICON against the Euler angles 

calculated based on the ARKit data exposed several deviations between the two systems 

across all tracked joints (see Table 1 for one joint). Across all joints and dimensions, the 

ARKit measurements revealed smaller SD and ROM values than the VICON 

measurements. Additionally, ARKit and VICON use different reference points to 

calculate the Euler angles, which led to mirrored values in the analysis (Figure 1b).  
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Even though the results exhibited a considerably smaller range of motion, the motion 

itself was detected in every repetition of the exercises (Figure 1). The ROM was 

consistently smaller throughout all repetitions in all exercises, supported by the smaller 

SD values. We calculated the Pearson correlation-coefficients for shoulder, elbow, knee, 

and ankle angle for all participants for the squat exercise for further analysis. We 

calculated the mean and SD values across all participants, dimensions, and left and right 

sides based on the coefficients. We used the correlation coefficients' absolute values for 

the correct detection of the motion, as due to the different reference points of VICON 

and ARKit, the values of the y dimension of ARKit were mirrored for the joints on the 

right side of the body. The mean correlation-coefficients and SD for the shoulder, elbow, 

knee, and ankle angles were 0.406 ± 0.236, 0.085 ± 0.117, 0.705 ± 0.144, and 0.654 ± 

0.184, respectively. 

Table 1. Results of the VICON and ARKit measurements in the squat exercise. The values represent 

the knee joint angles. All values are calculated in degrees. 

System Angle Dimension Min Max Mean SD ROM 

VICON Knee  x 0.57 119.61 46.35 42.45 119.04 

 Right y -3.60 16.52 5.86 6.73 20.12 
  z -22.86 36.30 1.53 20.97 59.16 

 Knee  x 0.00 117.98 46.58 42.22 117.97 

 Left y -3.50 13.77 4.46 5.76 17.27 
  z -17.14 41.08 7.69 20.29 58.22 

ARKit Knee x 23.15 54.37 29.44 6.39 31.21 

 Right y -9.07 1.28 -2.81 2.13 10.34 

  z -2.54 18.12 4.66 4.45 20.66 
 Knee x 22.77 55.88 28.79 7.11 33.11 

 Left y -2.08 5.79 1.66 1.48 7.87 

  z -19.85 3.00 -5.20 4.31 22.85 

 
Figure 1. Knee joint angles during squat by ARKit (blue) and VICON (red). 

Table 2. Pearson correlation-coefficients of the VICON and ARKit measurements for all 12 participants 

in the Squat exercise. 

 Shoulder Elbow Knee Ankle 

 L R L R L R L R 
Min 0.017 0.011 0.000 0.000 0.297 0.410 0.222 0.207 

Max 0.801 0.825 0.658 0.447 0.901 0.898 0.909 0.911 

Mean 0.367 0.439 0.084 0.085 0.674 0.736 0.614 0.693 
SD 0.227 0.241 0.128 0.104 0.147 0.134 0.173 0.186 
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3.2. Case Study 1: Recognition of Exercises in Goalkeeper Training 

 Figure 2 visualizes the output of the 3-dimensional positional data of a session with 

recordings of 5 exercises for the right hand and right foot. The different patterns are 

identifiable, as well as the repetitions of each exercise. 

Despite the comparably small dataset, the classifier achieved a validation accuracy 

of around 75% using the CNN in the test set (Figure 3). The dives and the two versions 

of the jump catch achieved high rates of correct predictions with around 70-80%. For 

comparison, we tested the same approach with Long Short-Term Memory Networks 

(LSTM) and Deep Neural Networks (DNN). Due to the small dataset, both alternatives 

Figure 2. Dataset of a session including 5 exercises: Dive High Right (1), Dive High Left (2), Catch Hand 

(3), Catch Body (4), and Catch Ground (5). 

 

Figure 3. Confusion matrix with precision values of the CNN prediction on 11 classes: (0) Dive Right (1) 

Dive Left (2) Catch Hand (3) Catch Body (4) Catch Ground (5) Jump Catch (6) Jump Catch Run (7) Throw 

Low (8) Throw High (9) Side Kick (10) Side Kick Ground.  
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showed overfitting tendencies and did not reach the accuracy of the CNN with an 

accuracy of 55% and 65%, respectively, for all classes. 

The first case study shows that the data generated by ARKit is accurate enough to 

distinguish between goalkeeper exercises. Even with a small dataset, a machine learning 

classifier can classify around 75% of the exercises correctly. 

3.3. Case Study 2: Recognition of Body-Weight Exercises in Physiotherapy and 
Resistance Training using a Pose-based Approach 

To build a mobile, ARKit-based application enabling tracking various dynamic body-

weight exercises, we designed a workflow for app users to add new exercises to the app. 

The prerequisite for registering a new exercise is that it has to consist of clearly different 

poses. An exercise needs to expose motion in at least one trackable joint in three poses 

as observable in a squat with full extension of both knees, flexion of at least 90deg in 

both knees, and a full extension of both knees again (Figure 4). The system captures the 

three poses, including the measured angles. For each pose, a set of essential joints can be 

defined, e.g., knee, ankle, and hip joint in the squat. This setup should be done by 

qualified personnel, e.g., a physiotherapist, to ensure the exercise's correctness. 

For exercise recognition, we convert the 3-dimensional positional joint data 

provided by ARKit into angles. Our proposed algorithm observes every motion detected 

by ARKit and matches the motion's progression against the curve expected by the 

exercise. Once all poses have been reached in the correct order, the algorithm considers 

the repetition as completed and increases the count, as shown in Figure 4c. The algorithm 

is flexible enough to recognize a variety of body-weight exercises without training a 

specific machine learning model through this approach. 

Considering the initial lab experiment results, approaches on qualitatively assessing 

exercise repetitions need to be investigated. Using the proposed algorithm allows the 

creation and tracking of dynamic body-weight exercises based on joint angle calculations.  

3.4. Case Study 3: Classification of Golf-Related Exercises 

We evaluated the Golf Coach app’s usability in an online questionnaire. In total, 22 golf 

trainers. The trainers' age ranged between 19 to 66 years, with a mean of 38.5 years and 

a median of 32 years. Their experience as a golf trainer ranged from 1 year to 40 years, 

with a mean of 13.14 years and a median of 7.5 years. 95.5% stated that they would use 

 

Figure 4. Exercise repetition tracking using the pose-based approach. ARKit’s recognition is shown by the 

robot overlay. ARKit tracks the poses in a, b, and c, and updates the repetition count after pose c is matched. 
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an app to track their trainees' progress, and 70% had used mobile coaching apps before. 

After a guided tour through the app, the participants were asked whether they would use 

it. 59% stated that they would use it, 9% would use it from time to time. 9% would prefer 

to test it first. 5% said that they would not use it. 18% chose not to answer. 55% stated 

that progress tracking would be the most important feature to them. 

4. Discussion & Future Work 

The lab experiment and the case studies provide evidence that mobile applications based 

on ARKit can track joint motion. Table 1 shows that the recognition is not as accurate as 

the reference values detected by VICON. ARKit does not seem to capture a full extension 

of the knee, as the minimum value provided is 22.77deg, compared to 0.00deg seen by 

VICON. Flexion is recognized, but to a much smaller extent than by the VICON system, 

with 119.61deg maximum in VICON and 54.37deg maximum in ARKit in the same joint. 

ARKit exposes smaller mean, SD, and ROM values. Similar observations apply to the 

inversion/eversion and rotation dimensions. The Pearson correlation-coefficients 

analysis shows that the ARKit and VICON measurements are strongly correlated, 

especially in the lower extremities. Even smaller changes in inversion/eversion are 

tracked in the squat motion's turning points, as shown in Figure 1b. Interestingly, the 

upper extremities' joint angle motion exhibit a considerably low correlation.  

The ROM detected by ARKit is comparatively but reliably smaller than the ROM 

of VICON. This poses the question of whether an algorithm can be developed, which 

can approximate the ARKit values to the correct values provided by the VICON system. 

Enabling this would allow performing not only a quantitative motion analysis but also a 

qualitative analysis. A qualitative analysis would allow additional possibilities in motion 

analysis, mainly regarding feedback to prevent wrong motion. 

Motion tracking using ARKit, especially regarding the lower extremity, seems to be 

a promising, light-weight approach. Even though the lab experiment shows that a 

quantitative assessment of exercise executions, e.g., for repetition counting, is feasible, 

the experiment was performed with a relatively limited number of participants and 

different exercises. A more extensive experiment is needed to gain further insights, 

which includes a more diverse set of participants and exercises. Through this, the 

limitations of the ARKit-based tracking need to be further investigated.  

In case study 1, we showed that we can use ARKit data as reference values to 

recognize patterns in recordings. It remains open to which extent we can use reference 

data provided by ARKit to allow qualitative analysis of the motion, as proposed in case 

studies 2 and 3. The case studies served to explore the possibilities of ARKit-based 

motion tracking in health-related fields. Even though the first results show a high interest 

of potential app users and the lab experiment and data analysis expose such approaches' 

potential, the case studies need to be tested and validated in more extensive studies. 

5. Conclusion 

In this paper, we were able to show that even though ARKit exposes major inaccuracies 

in tracking the ROM, it is reliable in tracking the motion itself. Therefore, the ARKit 

framework can be used to assess physical exercise, recognize exercises, and count 

repetitions. ARKit enables various use cases for mobile applications, especially in the 
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prevention and rehabilitation of diseases and injuries in humans. In this paper, we 

presented 3 different case studies. In case study 1, we classified exercises in goalkeeper 

training, which shows that we can identify patterns specific to exercises in the data 

provided by ARKit. In case study 2, we presented an algorithm that enables the creation 

and automatic tracking of dynamic body-weight exercises. In case study 3, we combined 

ARKit with an IMU sensor to enable a qualitative assessment of an exercise related to 

the golf swing. 

ARKit seems to be a promising, light-weight alternative to well-established motion 

tracking systems. Its limitations and possibilities need to be further investigated. 
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