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Abstract. The main goal of this project was to define and evaluate a new 
unsupervised deep learning approach that can differentiate between normal and 
anomalous intervals of signals like the electrical activity of the heart (ECG). 
Denoising autoencoders based on recurrent neural networks with gated recurrent 
units were used for the semantic encoding of such time frames. A subsequent 
cluster analysis conducted in the code space served as the decision mechanism 
labelling samples as anomalies or normal intervals, respectively. The cluster 
ensemble method called cluster-based similarity partitioning proved itself well 
suited for this task when used in combination with density-based spatial clustering 
of applications with noise. The best performing system reached an adjusted Rand 
index of 0.11 on real-world ECG signals labelled by medical experts. This 
corresponds to a precision and recall regarding the detection task of around 0.72. 
The new general approach outperformed several state-of-the-art outlier recognition 
methods and can be applied to all kinds of (medical) time series data. It can serve 
as a basis for more specific detectors that work in an unsupervised fashion or that 
are partially guided by medical experts. 
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1. Introduction 

The surge of digital patient data and the increased use of data-driven methods in 

medical research and care expedite the need for fast, accurate and automatic anomaly 

detection in chronologically ordered sequences of medical measurements (medical time 

series). The present work focuses on semantic anomaly recognition in medical time 

series data with the help of deep learning approaches. The basic idea is to use an 

autonomous and semantic encoding strategy that is trained to map similar intervals of 

time series (time frames) to neighbouring points. In this context, the term “semantic” 

refers to the characteristic of the encoding to “integrate the entire correlation 

structure” [1] among all time frames. Thus, the encoder learns to preserve certain 

relations between time frames while mapping them to a low-dimensional space. This 

automatic encoding of information must not be confused with the explicit manual 

modelling of associations as known from Semantic Web applications.  

Due to the large amount of data measured at an intensive care unit for every patient, 

a manual review of such time series is infeasible. Hence, systems that automatically 

extract valuable information are needed. One building block of these systems is a 
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mechanism for anomaly detection that autonomously identifies time frames diverging 

from the norm. Depending on the application, “normal” either means physiologically 

unsuspicious or is defined by a certain signal pattern specified by medical experts. 

The main goal of the project was to develop and evaluate a mechanism for the 

detection of anomalous time frames that are specific to certain signals like the electrical 

activity of the heart (ECG) or the blood pressure. 

To determine sequential anomalies, qualitative and semantic analyses are needed 

[2]. The methodological basis for our project is the combination of denoising 

autoencoders (DAEs) built of recurrent neural networks (RNN) and density-based 

clustering algorithms. In the first phase of this approach, a DAE encodes time frames 

into low-dimensional semantic representations. The second phase applies a cluster 

analysis to this low-dimensional embedding space. The extracted clusters are then 

interpreted as groups referring to “normal” or “anomalous” signals, respectively. In the 

present work “anomalous time frames” are defined as rare and unusual sequences. A 

remarkable aspect of the described method is that it can be trained in a fully 

unsupervised manner and does not depend on human expert knowledge. 

For the training and evaluation of the anomaly detection approach real-world 

medical data collected at hospitals were used. We employed data sets curated by the 

MIT Lab for Computational Physiology (PhysioNet). The assessment of the newly 

developed method is based on a data set that has been subdivided into “anomalous” and 

“normal” by medical experts. Thus, the performance can be quantified exactly and 

compared against state-of-the-art outlier detection methods. 

The overall research question answered in this paper can be stated as follows: “Can 

recurrent autoencoders be used in combination with density-based cluster analyses to 

detect anomalous intervals of real-world medical time series in an unsupervised 

fashion?” 

2. Related Work 

According to Hodge and Austin there are three different general approaches to anomaly 

recognition [3]. 

1. Determining outliers without prior information 

2. Modelling normality and abnormality 

3. Modelling only normality 

Approaches 2 and 3 require labelled training data, i.e. the data have to be classified 

manually into “anomalous” and/or “normal” before training. Labelled data is always a 

scarce resource and particularly hard to get for the anomaly detection task. The first 

difficulty is that there is no precise definition of “anomaly” that holds true for all 

domains. The classification of data as anomalous requires domain knowledge and gives 

latitude to the classifying expert [2]. Furthermore, anomalous data points or sequences 

appear rarely in real-world data sets due to their very nature. 

In the literature, one finds many approaches for the recognition of anomalies in 

medical signals. Most of these methods are developed for the use in alarm systems for 

critical care monitoring. Imhoff and Kuhls gave an extensive summary of available 

approaches in 2006 [4]. Most of the described early systems for time series analysis 

rely on pure statistical approaches like dynamic linear models, autoregressive models 

and self-adjusting thresholds. However, also some machine learning approaches 

including support vector machines and basic artificial neural networks (NN) trained in 
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a supervised fashion were applied at that time. More recent approaches for general 

anomaly detection rely on recurrent NNs trained to predict future values from a 

previous course. The difference between prediction and actual value is then used as a 

criterion for anomaly [5,6]. In the last few years, many approaches leveraged a special 

type of NNs, called autoencoder or replicator NN, in order to learn to detect anomalies 

in a semi-supervised fashion [7,8]. 

Autoencoders (AE) encode the input data by transforming it into a lower 

dimensional latent space before it is decoded back to the original dimensionality. The 

training aims at minimising the residual vectors, i.e. the differences between the inputs 

and outputs of an AE. In general, these autoencoders are trained on normal samples 

only (type 3). The approach is based on the assumption that (unseen) normal data 

should be reproduced relatively well when transformed by the network. In contrast, 

new anomalous data become apparent by large residual vectors, as their latent attributes 

deviate from those of normal ones [8]. In contrast to the previously described methods, 

these approaches can make their decisions on the basis of current sequence data 

without the need for any predictions. 

Many of these techniques are based on simple feedforward AEs and are tailored to 

detect single data points of fixed dimensionality. To be able to handle sequences of 

data points RNNs are needed in the encoding part of an AE. The focus of our work is 

on Gated Recurrent Unit (GRU) RNNs used to this end.  They achieve state-of-the-art 

results when applied to tasks with sequential data [9]. 

In order to detect outliers without having labelled training data at hand, an RNN-

based AE can be combined with a clustering mechanism. By clustering a large set of 

encoded sequence samples, different classes of “anomalous” and “normal” ones can be 

distinguished in the latent space. Such a model can be trained fully unsupervised and 

thus, belongs to type 1 of Hodge’s and Austin’s classification. 

Several publications such as [11] build upon this idea and describe the use of AEs 

to transform samples in a more discriminative latent space before clustering. Normal 

samples can then be identified as points lying in large and dense clusters, while 

anomalies appear in smaller groups or as noise points. 

3. Methods 

Our approach can be divided into two parts, 1) the semantic encoding of medical 

signals and 2) the subsequent cluster analysis in the generated low-dimensional space. 

This section also follows this subdivision. 

3.1. Denoising Autoencoder for Semantic Encoding of Time Series 

The inputs of the utilised AE are short intervals of a digitised physiological signal 

collected by a bedside monitor. Such intervals can be interpreted as vectors with a  
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Figure 1. Topology of the denoising autoencoder used for the semantic encoding. 

 

 

dimensionality d depending on the duration and digitisation frequency. For example, a 

snippet taken from a single ECG lead with a length of 10 s and a digitisation frequency 

of 125 Hz can be represented by a vector of 1250 dimensions. The task of the AE or, 

more precisely, of the included encoder is to transform these pieces into a low-

dimensional latent space. 

If an AE with high capacity is trained to extract low-dimensional features from the 

inputs, there is a risk that it learns to memorise which code belongs to which input 

signal without meaningfully distributing the codes in the latent space [12]. In such a 

case the learned encoding function cannot be used as a feature extractor. Alain and 

Bengio could prove that denoising training, i.e. a training based on noisy versions of 

the inputs, leads to autoencoders that implicitly learn the data-generating distribution 

from which the training points are sampled [13]. This means that denoising AEs map 

training samples to codes that preserve information of the training data distribution. 

The ability of DAEs to incorporate these “semantics” of the original vectors into the 

distribution of corresponding codes led to the name “semantic encoding”. We used an 

additive isotropic Gaussian noise with zero mean as the noise model. 

The DAE trained to conduct the semantic encoding consists of RNN-based 

encoder and decoder and its topology is depicted in Figure 1. In the first step a 

Gaussian noise is added to the input of size d. Afterwards, the noisy input is fed 

element wise into a bidirectional RNN made from GRU cells [14]. The last outputs of 

both directions are concatenated to get the code. To ensure a fixed code dimensionality 

c, both directions work with states of size c/2. A similar bidirectional GRU RNN is 

used as the decoder. In contrast to the encoder RNN, the full sequence of concatenated 

outputs is used. The sequence is interpreted as a single vector and trimmed to size d by 

dropping the last elements. Afterwards, it is passed to a final dense feedforward layer 

consisting of d neurons that compute leaky ReLU activations. The initial states of all 

RNNs as well as all biases are initialised with zeros. The weight matrices are initialised 

in accordance with the Glorot Uniform strategy.  

After training is finished, only the encoder part is needed for the semantic 

encoding of sequences. 

3.2. Cluster Analyses in Semantic Space for Anomaly Detection 

After the transformation of (medical) time series into representations that lie in a low-

dimensional semantic space, a cluster analysis is needed to detect anomalous or, more 

precisely, rare and unusual sequences. The reasoning is that by the encoding important 
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features are extracted or generated as combinations of original features. Moreover, the 

placement of these feature vectors in the latent space preserves information of the 

original data distribution. 

Since one cannot make any assumption on data distributions of unknown sets of 

medical time series, we decided to use a density-based clustering approach. In contrast 

to k-means and many other distance-based methods, density-based clustering does not 

rely on assumptions about cluster shapes. The so-called Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) finds an automatically determined 

number of clusters with arbitrary shapes. Roughly speaking, DBSCAN identifies core 

points, i.e. points with a dense neighbourhood, and connects these with their 

surroundings in order to define clusters. It depends on three parameters: a distance 

function, an upper bound on this distance ε, and a minimum number of points minPts, 

which in combination define dense neighbourhoods. At the end of the clustering 

procedure there might be points which are not assigned to any cluster and are 

interpreted as noise points. For a detailed description of the algorithm see [15].  

One problem of this clustering method is that the parameter values must be set 

manually and that they have a strong influence on the outcome. To reduce this 

shortcoming, we utilised a cluster ensemble approach that integrates many clusterings 

based on different parameter combinations into one consensus clustering: The Cluster-

based Similarity Partitioning (CSPA) suggested by Strehl and Ghosh [16]. As in a grid 

search, DBSCAN is performed several times with different parameter values. Based on 

these clusterings a similarity matrix over all input vectors is computed. Afterwards, 

graph partitioning is conducted to find the final consensus clusters. In derogation from 

the original line of action described by Strehl and Ghosh, we used Normalised Spectral 

Clustering instead of METIS for the graph partitioning. The reason for this is that 

METIS aims at generating sub-graphs/clusters of similar size. In the context of outlier 

detection this is inexpedient, as clusters are likely to be of different magnitudes. A 

comprehensive description of Normalised Spectral Clustering is given in [17]. The only 

parameter that must be set for Spectral Clustering is the number of partitions/clusters to 

be found.  

4. Experiments and Results 

For the training and evaluation of our approach we used freely-available real-world 

data taken from the MIMIC-III Waveform Database Matched Subset (MIMIC 

Waveform) [18] and from the training set of the PhysioNet/Computing in Cardiology 

Challenge 2015 (PhysioNet/CinC) [19]. Time series extracted from the first set were 

used to train and test the DAE, while the second set was utilised to evaluate the 

performance of the CSPA working on time series embedded by the previously trained 

DAE. 

4.1. Evaluation of Denoising Autoencoders for Semantic Encoding of Time Series 

Every training or test sample corresponds to a time frame of 10 s taken from an ECG 

signal (measured in Einthoven’s bipolar lead II). As these waveform data have a 

frequency of 125 Hz, samples are vectors comprised of 1250 dimensions. For the 

training set, ECG signals of 242 patients were used. The test set consisted of data 

collected from 21 different patients. Since several waveform intervals were taken from 
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every patient, the training set comprises around 1400000 and the test set approx. 

120000 vectors. To exclude bad signals that were generated due to technical errors or 

during calibration, samples showing at least one of the following characteristics were 

omitted: NaN value included, value larger than 3mV or smaller than -3mV included, no 

negative value for more than 1.5 second, interval of only negative values for more than 

0.2 seconds. This cleaning was not used on test data. 

The DAE was set up as described in section 3.1. It allowed inputs of size d = 1250 

and produced codes with length c = 126. For the minimisation of the mean squared 

error (MSE) between inputs and reconstruction the Adam optimiser with a learning rate 

of 0.001 was chosen. The mini-batch size was set to 2300 and the noise parameter of 

the isotropic Gaussian noise to 0.1. During 200 training epochs the error on the test set 

dropped continuously from an initial MSE of 0.048 to a final one of 0.0300. 

Experiments where LSTM cells or plain feedforward decoders instead of GRUs 

were used led to worse results. 

4.2. Evaluation of Cluster Analyses in Semantic Space for Anomaly Detection 

The unlabelled data sets used for the previously described experiment cannot be 

applied to quantify performances of the cluster analysis on the anomaly detection task. 

For this reason, another set that includes labelled data was used for the trials. It was 

built upon the training set of the PhysioNet/CinC challenge. All included ECG series 

had been identified by real-time bedside monitors as containing pathologic behaviour 

in the last 10 seconds and thus, had triggered an alarm. Afterwards, a team of medical 

experts has labelled the sequences as true or false arrhythmia alarms, respectively. We 

extracted the last interval of 10 seconds from every lead II ECG signal and sampled it 

down to a frequency of 125 Hz in order to generate 1250 dimensional vectors. Vectors 

containing NaN values were excluded, as they lead to undefined intermediate results. 

In total there were 428 signals labelled false alarms and 281 marked as true ones. The 

test set was enriched by 3000 random unlabelled samples from the MIMIC Waveform 

training set to include more information into the cluster analysis. The reasoning for this 

approach is that the more semantically encoded samples are given, the more 

information about their correlations is contained in the cluster space. For the evaluation, 

however, only the labelled samples were considered. 

To evaluate the performance of CSPA on the task of discriminating between true 

alarms (normal) and false alarms (outliers) the ensemble method was applied as 

described in section 3.2. Cosine distance was used for the DBSCAN analysis which 

was repeated for all parameter combinations (ε, minPts) ∈{n/100 | n ∈ ℕ ∧ n ≤ 100} × 

{m ∈ ℕ | 3 ≤ m ≤ 100}. To remove useless clusterings, only results with one normal 

group and one noise group were retained for the ensemble computation. Furthermore, 

in the described experiment, noise clusters had to contain at least 50% and at most 70% 

of the labelled samples for the clustering to be considered a valid result. This range was 

chosen, as the contamination ratio in PhysioNet/CinC set is around 0.6 if false alarms 

are considered the anomalous samples. The contamination ratio and the number of 

expected normal clusters are the only hyperparameters that have to be set manually 

before this kind of ensemble clustering. The final cluster-based similarity partitioning 

on all retained results led to the following two groups. The noise group comprised 310 

false and 120 true alarms, while the normal group included 118 false alarms and 161 

true ones. This corresponds to an adjusted Rand index (ARI) of 0.1051, a BCubed 

S. Festag and C. Spreckelsen / Semantic Anomaly Detection in Medical Time Series 123



Precision of 0.5626 and a BCubed Recall of 0.5637. For the two-class anomaly 

detection, this signifies a precision and recall of around 0.72. 

Stacked DAEs or DAEs with bigger code dimensions led to faster convergence 

and better performance during training, but CSPA performed worse on the generated 

embeddings. 

Two existing state-of-the-art outlier detection methods, Local Outlier Factor [20] 

and Isolation Forest [21], led to ARI scores of 0.0076 or 0.0165, respectively, when 

applied to the same (unembedded) data set. 

5. Discussion 

The findings of our project prove that the new semantic anomaly detection approach 

based on denoising GRU-autoencoders in combination with an ensemble of DBSCAN 

clusterings is suited for the task of unsupervised anomaly detection in medical time 

series. The method even outperformed two state-of-the-art outlier detection procedures 

on real-world clinical data. Nonetheless, these approaches have specific merits as one 

of them avoids a binary classification and instead introduces a “degree of being an 

outlier” [20] while the other exhibits favourable computational performance [21]. 

A surprising result of the trials is that the anomaly detection works better in a 

semantic space generated by a single DAE with a rather small code dimension than in a 

space computed by a stacked DAE or a DAE with larger code dimensions. It is likely 

that RNN-based DAEs which have very high capacity lead to overly complex 

representations that shadow the important information needed for the anomaly 

detection. However, we expect the right code dimensionality to be domain dependent. 

The division of the presented detection approach into two phases has an advantage 

regarding the computation cost. The cost-intensive training of a DAE can be conducted 

on a large data set of medical signals in a first phase. Afterwards, the trained DAE can 

be used repeatedly to encode new and small sets of the same signal before they are 

clustered to detect anomalies. In contrast to DAE training, encoding and clustering do 

not require large computation power. 

The presented method can be useful in diagnosis and patient monitoring.   

6. Conclusion 

This research has shown that it is possible to detect anomalous time frames in an 

unsupervised way by a new semantic anomaly detection approach based on recurrent 

denoising autoencoders and density-based cluster analyses. In this dichotomous system 

a recurrent DAE serves to reduce dimensionality and to preserve semantic information. 

The subsequent cluster analysis is needed in order to detect dense clusters 

corresponding to “normal” samples and noise points corresponding to anomalies. 

Future studies could address the extension of the semantic anomaly detection 

approach for the recognition of anomalies with variable lengths. Due to the used RNN, 

the implementation of this extension is easily possible. Since the data sets used 

throughout the experiments contained only ECG signals, further tests could be carried 

out on different time series types. 
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