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Abstract. Precision medicine is an emerging and important field for health care. 
Molecular tumor boards use a combination of clinical and molecular data, such as 
somatic tumor mutations to decide on personalized therapies for patients who have 
run out of standard treatment options. Personalized treatment decisions require 
clinical data from the hospital information system and mutation data to be accessible 
in a structured way. Here we introduce an open data platform to meet these 
requirements. We use the openEHR standard to create an expert-curated data model 
that is stored in a vendor-neutral format. Clinical and molecular patient data is 
integrated into cBioPortal, a warehousing solution for cancer genomic studies that 
is extended for use in clinical routine for molecular tumor boards. For data 
integration, we developed openEHR Mapper, a tool that allows to (i) process input 
data, (ii) communicate with the openEHR repository, and (iii) export the data to 
cBioPortal. We benchmarked the mapper performance using XML and JSON as 
serialization format and added caching capabilities as well as multi-threading to the 
openEHR Mapper. 
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1. Introduction 

Precision medicine is envisioned and the future of patient care in the healthcare sector, 

especially for personalized cancer treatment using genomic data. Due to reduced 

sequencing costs and turn-around time for analysis, panel, exome, and genome 

sequencing have found their way into treatment routine. Such data is usually discussed 

in so-called molecular tumor boards that have developed from specialized entity-specific 

tumor boards. Case discussions involve multiple parties and require integration of 

clinical and patient data with diagnostic results and mutation information that are needed 

to be extracted from the hospital information system (HIS) and other relevant clinical 

and research systems [1]. However, patient and diagnostic data is currently stored in 

proprietary formats maintained by various vendors, often preventing direct database 

access. Instead, information must be accessed using proprietary interfaces or those based 
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on the older underspecified HL7 V2 standard [3]. In order to open the vendor-locked 

information, the openEHR [2] community develops flexible and reliable health platforms 

that integrate interfaces between research and routine care as well. The aim is to establish 

an open platform that provides direct access to the data. This is also the intention of the 

HiGHmed consortium [4] which is part of the Medical Informatics Initiative Germany 

[5]. HiGHmed uses openEHR as their primary platform for cross-institutional data 

analysis on data of participating locations. A viable extension to the HiGHmed 

infrastructure and as a cross-consortium application we therefore determined the 

possibility to fuse HiGHmed’s openEHR platform with the tumor board application 

based on the data model of the MIRACUM consortium [6]. This work on openEHR 

Mapper shall demonstrate that interoperability within the Medical Informatics Initiative 

is possible across the participating consortia, instead of establishing multiple distinct 

networks of interoperability. 

To unlock the potential of an open platform, various patient and diagnostic 

information must be integrated, e.g., tumor mutation data must be reconciled with the 

patients’ current condition and treatment history. Theoretically, this can be done in three 

steps: first, the patient's data is extracted from the HIS and stored together with the 

annotated tumor genome in the openEHR-based platform [1]. Next, the tool supporting 

the molecular tumor board accesses and visualizes the data from the openEHR platform. 

Lastly, therapy recommendations of the molecular tumor board are transferred from the 

supporting tool back into the openEHR repository and eventually into the local HIS. 

Here, we focus on the first step of the proposed workflow. 

2. Material and Methods 

2.1. openEHR 

openEHR is an open standard for Electronic Health Records (EHRs) based on the ISO 

13606 standard. It defines a reference model and the Archetype Definition Language 

enabling domain experts to model basic concepts, i.e., clinical parameters like blood 

pressure in archetypes. Archetypes can be combined in blocks to build a template that 

represents a more complex concept like a report. This architecture allows using the same 

archetype for multiple purposes as well as sharing archetypes and templates on national 

or international platforms like the Clinical Knowledge Managers [7]. 

For storing clinical information in an openEHR repository, the data is assembled as 

Compositions and uploaded via a RESTful interface. Data inside the repository can be 

accessed using the Archetype Query Language (AQL), a special language for openEHR 

with a syntax similar to query languages like SQL. To ensure data quality and 

interoperability, openEHR offers terminology binding for local terminologies that are 

provided by the archetypes themselves as well as bindings to external terminologies like 

LOINC or SNOMED CT.  

 

2.2. Clinical data and whole-exome sequencing (WES) 

Clinical data contains demographic information like sex, age, ICD-O codes, gradings, 

histologic results, and information about surgeries. It is provided in a structured message 

format based on HL7 V2. In the particular case of the authors’ local environment, the 
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clinical data for cancer patients is based on the ADT/GEKID standard [8]. The 

technology of next-generation sequencing has revolutionized life sciences for the last 15 

years. The exome is the sequence within the human DNA that codes for proteins, yet 

makes up only about 1.1 % of the three billion bases of the human genome [9]. It can be 

sequences as so-called Whole Exome Sequencing (WES) at much less effort than the 

whole genome. Still, it contains most of the pathogenetic mutations relevant for tumor 

progression making it a reliable method for the diagnostic of cancer. Sequencing data is 

stored in FASTQ files that contain an identifier, the sequence of nucleobases, and a 

quality value for each base. WES results in two files (reads), having a size of about 4 

gigabytes each. In the field of oncology, WES is used to analyze differences between a 

sample from healthy tissue and tumor tissue. The WES data sets used to evaluate our 

work were obtained from Open-Access Data provided by the Texas Cancer Research 

Biobank (TCRB) [10]. Bioinformatic analysis of WES generally consists of aligning the 

reads from the FASTQ files to a reference genome, subsequent variant calling to 

determine the somatic, i.e. the acquired mutations of the tumor and annotation of the 

variants in terms of their effect on protein structure and function. In November 2019 the 

MIRACUM-Pipe was released as a part of the Medical Informatics Initiative Germany 

[11]. It provides a fully automatic pipeline that integrates various analysis tools for 

alignment, variant calling, and annotation of genomic raw data. While the results of each 

step can be used for further processing, the pipeline also generates a human-readable 

report. 

2.3. cBioPortal 

For warehousing of cancer genomic studies, the Memorial Sloan Kettering Cancer 

Center maintains the cBioPortal project [12][13]. It provides the functionality to compare 

different cancer studies and visualizes clinical and mutation information as well as image 

data. In addition to displaying the data, cBioPortal is also capable of integrating online 

information from databases like OncoKB to provide additional information about the 

impact of mutations. cBioPortal has the capability of data exchange and import. Data 

must be provided in a format called cancer study Error! Reference source not found.. 

It contains an identifier and the tumor entity in a metadata file, the annotated mutations, 

e.g., from the MIRACUM-Pipe described in 2.12.2, and the clinical data from the 

openEHR repository exported to tab-separated files.  

2.4. Evaluation Methods 

The evaluation of the mapping results covers the following aspects: 

1. Which attributes of the clinical data could be mapped? 

2. Which attributes of the genetic data could be mapped? 

3. How is the difference in performance, depending on the output format? 

4. How well does the mapping scale using multiple threads? 

3. Results 

We designed and implemented a tool called openEHR Mapper to support the integration 

of clinical data into the cBioPortal data warehouse and visualization tool. The integration 

has three parts as shown in Figure 1. 
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Our implementation of the openEHR Mapper is based on Java and uses the Archie 

library [15] as an implementation of the openEHR reference model on the client-side. 

For the server-side, we chose EHRbase [16], a server that implements the openEHR 

standard, but can also be applied to other openEHR platforms that are compliant to the 

most recent version 1.0.4 of the openEHR reference model [17] and openEHR REST 

API 1.0.1. 

The first step is mapping the input schemes of the clinical and the genetic data 

processed by the MIRACUM-Pipe to the openEHR templates. The second part fuse and 

serialize the previously generated model objects [17] and templates into a composition.  

The data is then submitted to the openEHR repository and is available to other (third-

party) applications. In a last step, we transform the processed data from the two source 

systems into a tab-separated file format that is required by cBioPortal. 

 

Step 1 Since openEHR provides a strict terminology, each attribute bound to a specific 

value set is being mapped using lookup tables that store the corresponding values. 

Attributes that are not linked to the terminology like the attributes from ADT/GEKID 

can be assigned directly. Table 1 gives an overview of the clinical attributes we focused 

on. The annotated genetic data is provided by the MICRACUM-Pipe and is separately 

provided in two different formats: a VCF file describing all somatic mutations and an 

extended MAF file containing the annotated mutations. 

In order to import the genetic information, the openEHR template Molecular Pathology 

Report, provided by the HiGHmed consortium [18][19], is used. The template processes 

most of the VCF file attributes directly and maintains additional information about the 

sample and the way it was processed. The MAF file can be directly processed by 

cBioPortal. Table 2 lists the attributes, we mapped from the VCF file to the openEHR 

template. 

 

Step 2 The openEHR Mapper combines the mapped data and a template file into a 

composition. The template file contains the structure, data types, and terminologies of 

the contained attributes. An implemented generator parses the template dynamically and 

builds objects containing the previously mapped attributes. Afterward, the information 

model objects are serialized and committed to the openEHR repository. The attributes of 

the clinical data were mapped, as shown in Table 1. As the openEHR specification [2] 

offers XML and JSON for serializing compositions, both formats were implemented. For 

the evaluation purpose, EHR compositions of artificially oversized patients’ were 

generated containing the somatic mutations from TCRB [10] in both formats and 

compared the processing time. The results are shown in Figure 2. To ensure that each 

attribute will only be processed once, the mapped data is stored in queues. The generator 

implements Java Runnables for the openEHR classes OBSERVATION, ADMIN_ENTRY, 

and CLUSTER to have a thread-safe data structure that enables the use of multi-

threading. This improves the processing performance, and an integrated caching 

mechanism prevents excessive memory access as shown in Figure 3. 

N. Reimer et al. / openEHR Mapper – A Tool to Fuse Clinical and Genomic Data 89



 

Figure 1. The Architecture of openEHR Mapper – Mapping clinical and preprocessed genetic data to the 

openEHR information model at the input side, querying data using AQL for generating compositions, and 

managing EHRs in the core component and exporting a cancer study for cBioPortal at the output side. 

 

Step 3 Clinical and mutation data is fetched and stored in a specific folder structure 

required by cBioPortal to build a cancer study. The clinical data is retrieved using AQL 

queries on the openEHR repository. Queries can be defined individually and granularly 

down to the level of single attributes. The annotated mutation data is retrieved from the 

MIRACUM-Pipe. After the study is assembled, it is stored in the cBioPortal database by 

executing SQL inserts from a Python script. 

4. Discussion 

We have demonstrated the use of openEHR as an open platform for storing and managing 

EHR data is the context of personalized oncology in clinical routine. We have 

successfully stored genetic data alongside with the corresponding clinical information in 

an openEHR repository. A central repository is placed as a mediator between source and 

the target system cBioPortal. Adhering to the harmonized data model and archetypes 

allows replacing either the input or the output system. The performance scales with 

processing thread count and allows the integration of multiple sites into a single target 

system. Unfortunately, our use case implementation currently lacks the representation of 

annotations for the genetic data. This would require changes in the archetypes describing 

genetic variants. Also, binding the mutation data to biomedical ontologies could add 

more value by enabling the capability to query mutations by the affection of cell 

processes. The mapping was done exemplary using the clinical tumor documentation 

software on our local site. For now, the mapped attributes of the clinical data provide the 

majority of important information for the use case but currently lack information about 

prior patient history and treatment. While the genetic variants contain essential attributes 
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like the chromosome, position, reference base, and alternative alleles, additional 

attributes were mapped to document further information about the filtering and sample 

genotypes. Especially the genotype fields are currently limited in the corresponding 

openEHR archetypes. It should be considered to add more parameters or slots which 

would allow custom fields if needed. 

 

Table 1. Attributes that are being mapped from 

clinical data to openEHR archetypes 

Attribute Mapping 

Birth / Death � / �

Diagnosis insurance �

Diagnosis (ICD-10) �

Gender �

Histology (ICD-O) �

Medications �

Procedures �

TNM status �

UICC classification � 

Table 2. Attributes that are being mapped from 

VCF files to openEHR archetypes 

Attribute Mapping 

Chromosome � 

Position � 

ID � 

Reference Base � 

Alternative alleles � 

Quality score � 

Filter � 

INFO fields 1/3 

Genotype fields 3/7 

� Attribute successfully mapped 

� Attribute not successfully mapped 

� Attribute could be mapped but the field was empty in our source data 

 

The evaluation of the different data formats shows that the JSON implementation is at 

least 21% faster than the XML one. The JSON format supports key-value pairs and arrays 

while XML only uses key-value pairs. This means that XML generates many more 

objects and is less efficient for this use case.  

 

Figure 2. Comparing the amount of time that is 

needed to generate an EHR composition when using 

XML or respectively JSON as target data format 

 

Figure 3. Overview of how the generation of 

clinical EHR compositions (JSON) scales with an 

increasing number of threads (Thr.) 

5. Conclusion 

In this paper, we have shown the possibility of integrating clinical and genomic data into 

EHRs stored in repositories based on the openEHR standard. The developed tools enable 

standardized EHR data for further use in the molecular tumor boards to assist 

personalized treatment decisions. As the input data is already structured, the integration 
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process could be redesigned to run fully automated, minimizing labor, cost, and time. 

During the development, it was discovered that the generation of EHR compositions 

could be heavily improved by using JSON instead of XML, caching Xpath queries, and 

the use of multiple threads. The openEHR Mapper provides a workflow to store clinical 

and genomic data using the openEHR data model built by domain experts, establishing 

easy access for use in tumor boards. The combination of openEHR standard, AQL, and 

modern web technologies has a high potential for further application, e.g., the structured 

data analysis of clinical information using AI technologies. 
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