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Abstract.  This manuscript investigates sample sizes for interim analyses in group 
sequential designs. Traditional group sequential designs (GSD) rely on “information 
fraction” arguments to define the interim sample sizes. Then, interim maximum 
likelihood estimators (MLEs) are used to decide whether to stop early or continue 
the data collection until the next interim analysis. The possibility of early stopping 
changes the distribution of interim and final MLEs: possible interim decisions on 
trial stopping excludes some sample space elements. At each interim analysis the 
distribution of an interim MLE is a mixture of truncated and untruncated 
distributions. The distributional form of an MLE becomes more and more 
complicated with each additional interim analysis. Test statistics that are 
asymptotically normal without a possibly of early stopping, become mixtures of 
truncated normal distributions under local alternatives. Stage-specific information 
ratios are equivalent to sample size ratios for independent and identically distributed 
data. This equivalence is used to justify interim sample sizes in GSDs. Because 
stage-specific information ratios derived from normally distributed data differ from 
those derived from non-normally distributed data, the former equivalence is invalid 
when there is a possibility of early stopping.  Tarima and Flournoy [3] have 
proposed a new GSD where interim sample sizes are determined by a pre-defined 
sequence of ordered alternative hypotheses, and the calculation of information 
fractions is not needed. This innovation allows researchers to prescribe interim 
analyses based on desired power properties. This work compares interim power 
properties of a classical one-sided three stage Pocock design with a one-sided three 
stage design driven by three ordered alternatives. 
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1. Introduction 

1.1. Background 

Influential books on group sequential methods, [1] and [2] rely on the asymptotic 

normality of test statistics to develop and justify group sequential designs (GSD). In 

Section 3.1 of [1], authors introduce the joint canonical distribution assumption, which 

if true, essentially implies that the central limit theorem (CLT) is applicable not just to 
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test statistics calculated using independent data, but also to separate stage-specific data 

and data collected using non-ancillary interim stopping rules. This assumption allows 

authors to assume test statistics are approximately normal. Alternatively, the probability 

model of Brownian motion also implies the joint asymptotic normality of stage-specific 

test statistics [2]. The possibility of early stopping is informative which makes originally 

normal test statistics non-normal. This change of distributions changes the information. 

As shown on page 174-175 of [2] and in [3], the MLE in the presence of possible early 

stopping does not change, but the distributional form of the test statistic is not normal 

anymore. Moreover, the impact of early stopping is more profound in that non-normality 

holds asymptotically [3-5], as convergence to a stationary distribution continues to exist. 

Asymptotic non-normality has repeatedly been found before in other adaptive 

designs [6-10]. 

The equivalence between interim information ratios and interim sample size ratios 

for independent and identically distributed data is used to determine interim sample sizes 

in GSDs. But interim information ratios derived from from non-normally distributed data 

differ from those derived from normal data. The possibility of early stopping makes the 

normality assumption invalid.  In this manuscript, GSDs relying on pre-determined 

fractional sample sizes are referred to as GSD-FSS. 

Because, as previously suggested, the theoretical justification used to choose sample 

sizes for interim analyses is not valid, a new approach was suggested in [3] in which 

interim sample sizes are determined by a sequence of ordered alternative hypotheses 

(GSD-SOA). Section 2 introduces a three-stage Pocock GSD. Section 3 describes a 

GSD-SOA and develops two GSD-SOA designs based on different α-spending functions. 

Section 4 compares stopping probabilities of the designs via Monte-Carlo simulations. 

Finally, Section 5 concludes the manuscript with a short discussion. 

2. A one-sided three-stage Pocock group sequential designs 

Group sequential designs have been implemented in various statistical software 

including but not limited to the SEQDESIGN procedure in SAS, an R package “gsdesign” 

and Cytel’s EAST software. All these programming products rely on the same theory 

and use information fractions to determine sample sizes of interim analyses. Then, to 

evaluate power properties their software relies Armitage’s formula [11] which is a 

recursive sub-density formula that incorporates the possibility of early stopping at 

interim analyses. Armitage’s algorithm correctly calculates overall statistical power 

under the alternative hypothesis. Thus, the software provides correct power calculations 

despite calculating  “information fractions” from normal densities. 

Consider a simple one arm study where a new treatment needs to be tested against a 

historically established level. Thus, the null hypothesis that the mean difference from 

historical controls, θ=0, needs to be tested. The alternative hypothesis is defined on a 

standardized scale (mean divided by a standard deviation): θ=0.1. The use a standardized 

scale (effect size) eliminates a need to estimate nuisance parameter (standard deviation) 

from the design problem. To design a three-stage clinical trial with possibility of early 

efficacy stopping one first chooses an α-spending function. Pocock’s α-spending 

function is a poular choice determined by having the same critical values at all interim 

analyses. SAS SEQDESIGN syntax to design such as study is  
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proc seqdesign altref=0.1 pss stopprob errspend; 

   OneSidedPocock: design nstages=3 alt=upper  

     method=poc BETA=0.2 ALPHA=0.05 STOP=REJECT; 
   samplesize model=onesamplemean(stddev=1); 

 

The following R code using the “gsdesign” package leads to identical sample sizes 

and critical values: 

 
gsDesign(k=3,test.type=1,sfu="Pocock",n.fix=NULL, 

alpha=0.05,beta=0.2,delta=0.1) 

 

Output from this SAS procedure states that the first interim analysis should be performed 

after n(1)=244 patients, the second is at n(2)=488 if did not stop at stage one, and the third 

and final analysis is done at n(3)=732 if the study did not stop before. These sample sizes 

are justified by information fractions 0.3333 at stage k=1, 0.6667 at k=2, and 1.0000 at 

k=3. At each interim analysis, the test statistic (sample mean multiplied by a square root 

of the sample size and divided by a sample standard deviation) is compared against the 

efficacy critical value 1.9922 (c1=c2=c3): if above, the study is stopped for efficacy, if 

below, the study continues with additional data collection until next interim or final 

analysis. The α-spending function is defined by cumulative stopping probabilities 0.0232 

at stage k=1, 0.0387 at k=2, and 0.0500 at k=3, under the null. More generally, the SAS 

output reports the following operational characteristics: 

 
          ----Stopping Probabilities---- 

 

        CRef    Stage_1    Stage_2    Stage_3 
 

      0.0000   0.02318    0.03866    0.05000 

      0.5000   0.11289    0.22628    0.32918 

      1.0000   0.33343    0.62094    0.80000 

      1.5000   0.63698    0.91735    0.98455 

 

 
               ----Sample Size Summary---- 

 
       Test                               One-Sample Mean 

       Mean                                           0.1 

       Standard Deviation                               1 

       Max Sample Size                           731.7011 

       Expected Sample Size (Null Ref)           716.6188 
       Expected Sample Size (Alt Ref)            498.9308 

 

Note that this design is not driven by these stopping probabilities, but is determined by a 

chosen α-spending function and multiple fractional sample sizes. Monte-Carlo 

simulation results for this Pocock design are reported in Table 2. 

 

In the next section, a pre-determined α-spending function and a sequence of ordered 

alternatives to be detected with the predetermined stopping probabilities are used to 

determine interim sample sizes and stage-specific critical values. 
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3. Group Sequential Design with Interim Sample Sizes Defined by Ordered 

Alternatives 

In [4], the sample sizes of interim analyses were chosen to have desired power 

determined by several ordered alternatives. For a one-sided three-stage design 

considered in Section 2, they suggested choosing interim sample sizes to secure 80% 

statistical power at all three alternatives: θ=0.3, θ=0.2, and θ=0.1 regardless of when 

stopping occurs. They relied on equal stage-specific rejection probabilities (0.0172) 

under the null hypothesis.  Their chosen sample sizes for interim analyses were n(1)=98, 

n(2)=196, and n(3)=772; and stage specific critical values were c1=2.12, c2=2.02, and 

c3=2.02. Rejection probabilities and expected sample sizes under various alternatives are 

reported in Table 1. 

Note, Table 1 relied on an equal probability of rejecting the null hypothesis at each 

of three stages stage if θ=0. Let αk denote the stage-specific rejection probability, that is, 

the probability of rejecting the null hypothesis at analysis k given the study did not stop 

at stage k-1. Then if α1=.0172 and α2= 0.0172, the probability to reject by or at stage 2 = 

0.0172+(1-0.0172) 0.0172=0.0341. Similarly, if α3= 0.0172, then the overall type I error 

is 0.0172+(1-0.0172)0.0172+(1-0.0172) (1-0.0172)*0.0172=0.0507. Due to rounding, 

type I error is not exactly 5%, but it is close enough for illustrative purposes. These 

results are consistent with Monte-Carlo simulations reported in Table 1 under θ=0. This, 

however, highlights the fact that Pocock’s design does not have equal rejection 

probabilities at each stage: uniform critical values do not translate into equal rejection 

probabilities. 

To make GSD-SOA comparable with the α-spending function used in Pocock’s 

GSD-FSS (Table 2), we need to build a GSD-SOA design with the same α-spending 

function. It is easy to show that the α-spending function defined by cumulative rejection 

probabilities (0.0232, 0.0387, and 0.0500) is associated with stage-specific rejection 

probabilities α1= 0.0232, α2= 0.0158, and α3 = 0.0118. This new α-spending function 

leads to a new SOA design with n(1)=90, n(2)=205, and n(3)=863 with stage-specific 

critical values c1= 1.9921, c2=2.0216, and c3=2.1812. Monte-Carlo simulations are 

reported in Table 3. 

4. Monte-Carlo Simulation Experiments 

Each Monte-Carlo simulation study in this section relied on 100,000 random sequences 

of standard normal random variables.  

 

Table 1: GSD-SOA’s cumulative rejection probabilities by stage and expected sample sizes using with equal 

probabilities of stage-specific stopping:  α1= α2=α3= 0.0172. 

 θ  Pr(Reject at k=1) Pr(Reject at k≤2) Pr(Reject at k≤3) E(N) 

0.0 0.0179 0.0337 0.0509 750.83 

0.1 0.1320 0.3019 0.7990 585.18 

0.2 0.4473 0.7985 0.9998 268.24 

0.3 0.8007 0.9868 1.0000 125.17 
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Table 2: GSD-FSS’s cumulative rejection probabilities by stage and expected sample sizes using with Pocock’s 

α-spending function: α1= 0.0232, α2= 0.0158, and α3 = 0.0118. 

 θ  Pr(Reject at k=1) Pr(Reject at k≤2) Pr(Reject at k≤3) E(N) 

0.0 0.0248 0.0407 0.0515 716.02 

0.1 0.3351 0.6219 0.8004 498.49 

0.2 0.8704 0.9930 0.9997 277.35 

0.3 0.9965 1.0000 1.0000 244.87 

 

Table 3: GSD-SOA’s cumulative rejection probabilities by stage and expected sample sizes using with 

Pocock’s α-spending function: α1= 0.0232, α2= 0.0158, and α3 = 0.0118. 

 θ  Pr(Reject at k=1) Pr(Reject at k≤2) Pr(Reject at k≤3) E(N) 

0.0 0.0254 0.0409 0.0516 833.01 

0.1 0.1513 0.3124 0.8019 638.40 

0.2 0.4654 0.8028 0.9999 277.87 

0.3 0.8016 0.9867 1.0000 119.74 

 

5. Discussion 

GSDs are predominantly defined by a triplet of (1) an α-spending function, (2) 

overall statistical power and (3) fractional sample sizes (FSS), whereas interim stopping 

probabilities are not directly controlled; but they are determined by the input triplet. The 

alternative illustrated in this paper is motivated by the recognition in [3] that possibility 

of early stopping alters finite-sample and asymptotic distribtions of test statistics; and 

this alteration invalidates the FSS assumption that sample size fractions are equal to 

information fractions calculated from normal densities. One option is to calculate 

information measures from the true asymptotic distributions, but this is a 

computationally intensive proposition and the relationship between the true information 

and the sample size may not be simple. 

To avoid FSS as an input for GSDs, researchers can use a sequence of alternative 

hypotheses, each with a pre-determined stopping probability. In this paper, several 

Monte-Carlo simulation studies highlight these new GSD SOA designs. Examples 

demonstrate how to use stopping probabilities as design inputs at alternative hypotheses 

that are fixed for each interim test. As the clinical research community is familiar with 

the concept of statistical power, we anticipate that this new design will improve the 

clinical interpretation of design choices and facilitate the use of GSD in clinical research. 
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