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Abstract. The detection of cardiac arrhythmias has a long history in medicine, with 
current developments focusing on early detection using mobile devices. In basic 
research, however, the use cases and data differ greatly from the experimental setup. 
We developed a Python-based system to ease detection and analysis of arrhythmic 
sections in signals measured on extracted and stimulated cardiac myocytes. Multiple 
algorithms were integrated into the system, tested and evaluated. The best algorithm 
resulted in an F1-score of 0.97 and was primarily provided in the application. 
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1. Introduction 

The detection of cardiac arrhythmia has a long history in medicine [1], starting in 1971 

[2]. At present, there is a trend to early detection of arrhythmia using mobile devices 

such as smartwatches [3]. However, in basic research, use cases, requirements and 

resulting data differ greatly from the experimental setup and arrhythmia may be induced 

by substances or treatment types. Systems that ease and automate analysis for specific 

research questions with graphical user interfaces are not always available, and parts of 

the analysis tasks often have to be performed manually. 

In the present experimental setup, cardiac myocytes (muscle cells) were isolated 

from mice and measured as single cells, using different substances to study their 

arrhythmogenic potential. The cells were electrically stimulated with a certain frequency 

for several minutes according to the experimental protocol. The protocol may vary with 

the specific research question (for an example, see [4]). When healthy, each stimulation 

induces a single contraction resulting in a regularly beating myocyte following the pace 

of electrical stimulation. The contractions were recorded in terms of sarcomere length by 

light microscopy and fluorescence recordings using an IonOptix setup2. The rhythm was 

continuously monitored. The resulting signals were analyzed manually. 

We did not find any commercial nor other software that allows for a simplified 

analysis of such signals in an easy way. The only other publication that was somewhat 

comparable was done by Gallett et al. [5], who however analyzed arrhythmias in 
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conscious mice. Thus, the only option for the researcher would be a manual counting or 

the analysis using statistical tools. However, the former is very time-consuming, and the 

latter may not provide specific solutions for the research question and, thus, may require 

programming skills. 

Our goal was to provide researchers with a system that simplifies the detection and 

analysis of arrhythmias in signals recorded on myocytes. 

2. Methods 

2.1. System design 

We developed an application with a graphical user interface using Python 3.7.6 and 

Pyforms3, illustrated in Figure 1. It allows to load the signal of a single measurement and 

accompanying stimulation markers. Currently, only a simple tabular data format 

provided by IonWizard2 can be imported, which contains columns for an X (i.e., time) 

and Y (i.e., sarcomere length in µm) value, a mark time (i.e., stimulation times) and a 

mark type (i.e., the mark type of the electric stimulation; this is required since the data 

may contain marks manually added during experiment execution). After loading a 

measurement, the data is instantaneously displayed and can be explored using zooming 

and panning. The graphical user interface allows to detect arrhythmic sections using an 

algorithm that can be configured with multiple parameters.  

In a physiological state, a stimulation triggers a single beat (i.e., contraction). 

Consequently, the basis for the detection of arrhythmic sections is a detection of beats, 

 

 
Figure 1. Screenshot of the arrhythmia detector showing the parameter selection on the 

left and the preview on the right. 
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which can be reduced to a detection of peaks for this use case. The main difficulty is that 

beat amplitudes, widths, distances and frequencies vary greatly over time, exposure to a 

substance, and can be very different for each measurement. After experimenting with 

different filters on several data sets, we ended up using a simple algorithm that detects 

peaks without filtering. The whole signal is divided into segments (e.g. 5 sec long, 

moving windows), in which peaks are detected using the Python SciPy find_peaks 

function and a specific prominence calculated from the segment data (using mean, 

median, and percentiles) and input from the user interface. The user interface allows to 

modify multiple parameters: (1) The segment length, (2) the minimal peak prominence 

(given as percentile of amplitude height versus the mean/median amplitude height), (3) 

an option to calculate a prominence that is close to the prominence of the previous 

segment’s prominence (several prominence values are calculated for a range of ±3 of the 

given percentile value (cf. variable 2); the prominence closest to the previous one is 

selected), (4) a minimum absolute prominence, (5) a minimum absolute distance between 

peaks, and (6) a maximum distance between mark and peak. The manually optimized 

parameters (cf. section 2.2) are set as application default. Adjustments may be necessary 

to optimize the peak detection for specific measurements, e.g. including many narrow 

peaks. After execution, the marks, peaks, and arrhythmic sections may be displayed for 

review (e.g. as illustrated in Figure 2). 

2.2. Data analysis 

We created a gold standard for arrhythmic sections of signals from 10 cell experiments 

(overall >2 hours of measurement) by a manual visual inspection of the data. Arrhythmic 

sections start and end at a marker (time of a stimulation). The gold standard was halved 

in a test and verification set. We used the test data sets to manually optimize the 

parameters of the moving window algorithm (A1, cf. results in Figure 1) and different 

static settings for baseline comparison in the peak detection algorithm of the python 

SciPy library: (A2) a minimum distance of 200 [with 250 Hz, about 90% of the time 

between two stimulations], (A3) a threshold of 0.01, (A4) a prominence of 0.02, (A5) 

the setting of (A3) combined with a peak width of 15, and (A6) the setting of (A5) 

combined with a minimum distance of 40. Each setting is used statically over the whole 

measurement.  

Evaluation was done with true/false positive/negative values and the metrics 

precision (TP / (TP+FP)), recall (TP / (TP+FN)), F1-score (the harmonic mean of 

precision and recall, 2 * (precision * recall) / (precision + recall)), and balanced accuracy 

((TPR+TNR)/2, where TPR=TP/(TP+FN) and TNR=TN/(TN+FP)). Data presented in 

the results are based on the verification data set and present macro averages (mean of 

metric values) of the tested cells. 

3. Results 

A screenshot of the resulting application is shown in Figure 1. A full measurement 

including identified peaks and sections with arrhythmia as displayed in the application 

are presented in Figure 2A. Figures 2B-F illustrate details of a normal physiological 

section (B) and sections with arrhythmia (C-F). Data about identified peaks and sections 

with arrhythmias can be extracted for further analysis. 
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Table 1 presents the macro averages of all metrics and algorithms. The precision is 

generally high, which means that the algorithm’s selections mostly have arrhythmia. 

However, in the static algorithms, the recall is mostly low, which also leads to low F1-

scores. The best static algorithms have an F1-score of 0.81 (A2, static distance) and 0.80 

(A4, static prominence). In contrast, the moving window algorithm that calculates peaks 

with adjusted parameters per segment, results in an F1-score of 0.97. The balanced 

accuracy also takes true negatives into account and shows similar results. 

 

 
Figure 2. Illustration of an example signal including peaks and arrhythmic sections 

detected using the moving window peak detection. (A) The full signal with arrhythmic 

sections being highlighted in light blue. Segments of the signal are magnified in 

subfigures B-F. (B) A rhythmic section. (C+D) A short arrhythmic section with 

stimulations resulting in additional and/or omitted beats. (E) A long arrhythmic section 

except for a single stimulation with beat. (F) Diverse beats without direct relation to the 

stimulation. 

 

Table 1. Metrics of the moving window and baseline algorithms (c.f. section 2.2): Makro 

averages of true/false positive/negatives (in percent of all), precision (prec.), recall, F1-

score, and balanced accuracy (bACC). 

Algorithm TP TN FP FN Prec. Recall F1 bACC 

A1. Moving Window 38.2 60.0 1.0 0.8 0.97 0.97 0.97 0.95 

A2. Static distance 36.3 47.3 2.9 13.5 0.85 0.84 0.81 0.70 

A3. Static threshold  39.2 0.1 0.0 60.7 1.00 0.39 0.51 0.35 

A4. Static prominence 38.2 52.5 1.0 8.2 0.99 0.73 0.80 0.81 

A5. Static prominence 

and width 

38.5 34.4 0.7 26.4 0.97 0.53 0.65 0.73 

A6. Static prominence, 

width and distance 

38.5 40.5 0.7 20.3 0.97 0.62 0.74 0.78 
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4. Discussion 

We presented an application that supports the identification of arrhythmic sections in 

basic research measurements on cardiac myocytes. The application allows to analyze 

single cell measurements using a moving window algorithm that automatically adjusts 

to quickly changing signals over time. 

Since we did not find any other software that allows for such an analysis, we 

evaluated the system against baseline algorithms typically provided by statistical 

software. These algorithms have in common that a single defined value was used during 

the whole measurement. Two of the static baseline algorithms had a decent result. 

Unexpectedly, the static distance algorithm had the best result of the baseline algorithms. 

As the stimulation has a constant frequency, using a fixed minimum time will identify 

each correct beat, but it will also miss any additional beats between stimulations. During 

the manual training of the algorithms, the best static algorithm we found had a fixed 

prominence, a fixed peak width and a short minimal distance between peaks, but did not 

turn out to be the best in the verification. However, all algorithms had difficulties in the 

peak detection, if there were large signal amplitudes during rest.  

The general method allows to determine arrhythmias objectively on the single 

cell level in order to link them directly to parameters that can only be measured at the 

single cell level, e.g. cytosolic calcium and sodium concentration. Thus, this method 

allows to better determine the cellular parameters that have an influence on the 

development of arrhythmias and thus to develop more targeted therapy options.  
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