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Abstract. Epilepsy is the most common neurological disorder. The diagnosis 

commonly requires manual visual electroencephalogram (EEG) analysis which is 
time-consuming. Deep learning has shown promising performance in detecting 

interictal epileptiform discharges (IED) and may improve the quality of epilepsy 

monitoring. However, most of the datasets in the literature are small (n≤100) and 
collected from single clinical centre, limiting the generalization across different 

devices and settings. To better automate IED detection, we cross-evaluated a Resnet 

architecture on 2 sets of routine EEG recordings from patients with idiopathic 
generalized epilepsy collected at the Alfred Health Hospital and Royal Melbourne 

Hospital (RMH). We split these EEG recordings into 2s windows with or without 

IED and evaluated different model variants in terms of how well they classified 
these windows. The results from our experiment showed that the architecture 

generalized well across different datasets with an AUC score of 0.894 (95% CI, 

0.881-0.907) when trained on Alfred’s dataset and tested on RMH’s dataset, and 
0.857 (95% CI, 0.847-0.867) vice versa. In addition, we compared our best model 

variant with Persyst and observed that the model was comparable. 
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1. Introduction 

Epilepsy is a neurological disorder in which a patient has an enduring tendency for 

recurring seizures. In Australia, 3-3.5% of the population is affected by epilepsy at some 

time during their lives [1]. Electroencephalography (EEG) is an important tool in the 

diagnosis of epilepsy. Routine EEG records the voltage fluctuations resulting from 

neuronal post-synaptic potentials within the brain, using surface scalp electrodes. 

Interictal epileptiform discharges (IED) are abnormal EEG waveforms that are often 

sharp, standing out from the background rhythm, and are seen in patients with epilepsy. 

Neurologists use epileptiform transients on EEG to support the diagnosis of epilepsy. 

Automated IED detection algorithms have received a lot of research interest. A recent 
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review of an extensive number of machine learning methods for automated IED 

detection (SVM, KNN, etc.) reported sensitivity from 30% to 99% [2]. Among all the 

existing methods, Persyst [3], the industry-standard IED detection software developed 

by Persyst Corporation, is the only software with FDA approval and has been shown to 

have similar performance to skilled neurologists [4]. In recent years, deep learning 

methods have emerged as powerful computational methods, superior to human experts 

in various tasks [5,6]. Researchers have demonstrated that the convolutional neural 

network (CNN) has had promising performance in IED detection [7,8]. However, most 

of these works only studied a small number of patients (n≤100). The research with the 

largest datasets studied 1,051 IED and 8,520 non-IED EEG recordings collected at the 

Massachusetts General Hospital between 2012 and 2016 [9]. Furthermore, datasets in 

the literature were collected from single hospitals which might limit the generalizability 

across different devices and settings. 

To address the above limitations, we performed a study of deep learning methods in 

automated IED detection on a large set of routine EEG recordings of patients with 

idiopathic generalized epilepsy (IGE), collected from 2 hospitals. As routine EEG is a 

clinical standard step in epilepsy diagnosis, we implemented a general architecture 

which was invariant to the diversity of patients. To evaluate the generalizability of the 

proposed architecture, we trained different model variants on a dataset from one hospital 

and tested it on the other hospital. We also compared the performance of our architecture 

with Persyst 14 on a small independent set of routine EEG recordings. 

2. Methods 

2.1. Objective 

The objective of this study was to automate the routine EEG review specifically for 

generalized IED detection from routine and outpatient EEG recordings whose durations 

vary from 30 minutes to 1 hour. For proof of concept, we focused on patients with 

idiopathic generalized epilepsy. As routine EEG is an initial standard step of epilepsy 

diagnosis procedure, we aimed to develop general models that would be invariant to the 

demographics of patients, cover a variety of artefacts and waveforms, and would be most 

suitable for deployment. Cross-evaluation between 2 hospitals will be carried out to 

confirm the generalizability of the models. In addition, the architecture will be compared 

with Persyst 14 [3] on an independent set of EEG recordings in IED detection and 

abnormal and normal EEG classification. We considered an EEG recording to be 

abnormal if it had at least one unequivocal IED generalized discharge or fragment. 

2.2. Datasets and Labelling 

We collected routine EEG recordings, between 2008 and 2019, from patients with 

idiopathic generalized epilepsy (IGE) seen at the Alfred Health Hospital (n = 94) and 

Royal Melbourne Hospital (RMH; n = 110) hospitals in Melbourne, Australia. These 

consist of 956 and 1,518 IED, respectively. In addition, normal control recordings were 

obtained from these sites (n = 98 and 120, respectively). The demographics of patients 

are summarized in Figure 1. All EEG recordings were recorded with the 10-20 system 

and annotated by 3 board certified neurologists with accredited training in EEG 

reporting. We then trained the architecture on one set and tested on the other set. 
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Figure 1. Demographics of patients with IGE. 

 

To compare with Persyst 14, an independent experiment to review clinical utility 

was conducted with a neurologist at Alfred Health hospital. 8 EEG recordings with 

generalized IED and 11 normal EEG recordings were randomly selected from 2 

hospitals. 

2.3. Methodology 

2.3.1. Preprocessing 

A band-pass Butterworth filter of 0.5 - 50 Hz was used to remove muscle artefacts. We 

split the EEG into 2s windows of IED and normal with 50% overlap. We used 19 

channels and all windows were resampled to 256 Hz. To avoid using any IED, which are 

missed by the neurologists, as normal windows, only normal windows from normal EEG 

recordings were used. All windows were z-score normalized. 

2.3.2. Architecture Design 

Residual network (Resnet) introduces residual connections to overcome the vanishing 

gradient problem when the deep learning network gets deeper [10]. Resnet has been 

demonstrated to be effective in image classification [10, 11], and recently in time series 

classification [12]. In our experiment, we considered each 2s window from an EEG 

recording as a multivariate time series with 512 timesteps and 19 features, and 

implemented the Resnet architecture from [12] (Resnet-TSC). Resnet-TSC consists of 3 

residual blocks with 3 different number of filters: 64, 128, and 256. 

2.3.3. Data Augmentation 

As labelling IED is a resource intensive task, data augmentation is a solution to create a 

variance in the dataset. We implemented the data augmentation method from [7]. In each 

batch, a reference channel is randomly chosen. The rest of channels are ranked according 

to the Pearson correlation with the reference channel. This aims to make the model 

invariant with respect to the location of the channel and keep the local similarities in 

which IEDs are visible in spatially adjacent channels. 

2.3.4. Tackling Imbalanced Dataset 

In the collected datasets, the number of windows without IDE is significantly higher than 

that of windows with IDE. The ratio of IED windows to normal windows from Alfred 

and RMH are 1:100 and 1:30, respectively. In order to address this, we studied 3 
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strategies: oversampling, focal loss, and focal loss with oversampling. In terms of 

oversampling, the windows with IED were oversampled so that the numbers of samples 

in the two categories were equal. Focal loss [13] was introduced by a research team at 

Facebook AI Research (FAIR) and shown to be effective in objects detection where 

background classes significantly outnumbered foreground classes. Focal loss modifies 

the binary cross-entropy by adding a tuneable parameter γ and a balanced parameter α. 

The focal loss is defined as FL(p)=−α(1− p)γlog(p). We used the same values as in the 

original paper for these parameters. 

3. Results 

3.1. Cross-evaluation Results 

We trained the architecture with a batch size of 64. In addition, the cyclical learning rate 

in [14] was used for faster convergence. The stochastic gradient descent was used with 

the maximum and minimum learning rate of 0.001 and 0.0001, respectively. The step 

size was set to 8. Table 1 and Table 2 show the 3-folds results in which sessions were 

divided into 3 different groups and the results from cross-evaluation on the 2 datasets. 

The results from our experiment indicated that the architecture generalized well across 

different datasets. The focal loss strategy had the highest AUC score, 0.894 (95% CI, 

0.881-0.907) when it was trained on Alfred’s dataset and tested on RMH’s dataset. 

Conversely, the focal loss with oversampling strategy had the highest AUC score, 0.857 

(95% CI, 0.847-0.867) when it was trained on RMH’s dataset and tested on Alfred’s 

dataset. 

To verify if the observed differences among these AUC scores are random, we 

applied the method of comparison of AUC by Hanley and McNeil [15] with the cut-off 

of 1.96 (α = 0.05). In addition, we applied the Benjamini-Hochberg procedure [16] with 

the control level of 0.05 to control the false discovery rate. The results indicated that the 

above 2 AUC scores were the highest and significantly different from that of other model 

variants within each dataset (p ≤ 0.04). 

 

Table 1. Results of Resnet-TSC trained on Alfred’s dataset. 

 Trained on Alfred’s 
dataset 

Tested on RMH’s 
dataset 

Mean AUC of 3 folds AUC 

Oversampling 0.936 0.884 

Focal loss 0.923 0.894 

Focal loss with oversampling 0.940 0.877 
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Table 2. Results of Resnet-TSC trained on RMH’s dataset. 

 Trained on RMH’s 
dataset 

Tested on Alfred’s 
dataset 

Mean AUC of 3 folds AUC 

Oversampling 0.921 0.815 

Focal loss 0.925 0.842 

Focal loss with oversampling 0.924 0.857 

3.2. Comparing with Persyst 

In this experiment, we tested all model variants on the second dataset. We observed that 

in terms of classifying a whole EEG as normal or abnormal, the Resnet-TSC with 

oversampling trained on Alfred’s dataset resulted in the highest sensitivity and 

specificity, compared to other variants, 100% and 36%, respectively. The sensitivity was 

84.5% in terms of detecting 2s windows overlap with annotated IED. 

Sensitivity and specificity of Persyst 14 (at moderate spike detection sensitivity 

setting) in EEG classification were 100% and 58%, respectively. The sensitivity of 

Persyst in individual IED detection was 82.7%. Overall, the results are comparable to 

the industry standard. Results are shown in Table 3. Moreover, we also explored the false 

positive samples detected by our model and observed that most of them were ocular 

artefacts. 

 

Table 3. Resnet-TSC vs Persyst. 

EEG classification 

Resnet-TSC Persyst 

Sensitivity Specificity Sensitivity Specificity 

100% 36% 100% 58% 

IED Detection 

Resnet-TSC Persyst 

Sensitivity Precision Sensitivity Precision 

84.5% 27% 82.7% 37% 

4. Discussions 

Despite the fact that our 2 datasets are not as large as in [9], we demonstrated the Resnet-

TSC with the 3 strategies of tackling imbalanced dataset generalized well across two 

different hospitals. In the second experiment, we collected a small newly recorded set of 

routine EEG data and showed that Resnet-TSC with oversampling trained on the Alfred 

hospital was comparable to Persyst 14. A larger sample size is needed to confirm this. 

In addition, over-classifying ocular artefacts as IED was found to be a limitation of the 

model in this experiment. This indicates an additional ocular artefact removal is needed. 

We will integrate this into our future work. 
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5. Conclusions 

In this paper, we studied a Resnet architecture in automated IED detection on EEG 

recordings datasets from 2 hospitals. We also evaluated 3 different strategies to tackle 

the imbalanced dataset problem, oversampling IED samples, focal loss, focal loss with 

oversampling. Our models generalized well across the 2 datasets. We also compared the 

models with Persyst, industry-standard software for IED detection, on a separate test 

dataset. The model with an oversampling strategy trained on Alfred’s dataset had the 

best performance and was comparable to Persyst. We also found that an additional ocular 

artefacts removal step was needed. Our future work includes improving the models and 

collecting another dataset from additional hospitals with the aim of providing an 

interictal epileptiform detector that will be reliable across multiple settings and usable in 

the early stages of epilepsy diagnosis involving both routine and sleep-deprived EEG. 
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