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Abstract. Falls are a well-known danger for older adults. With the worldwide 

population aging, there has been an increasing interest in assessing the risk of falling. 

This work presents a novel algorithm for continuous fall risk assessment, relying on 

a linear regression model whose inputs consist of both measured and self-reported 

risk factors. Two models were conceived and compared, following two distinct 

approaches, a theoretical and an empirical one. The system is pervasive and was 

tested in free-living unsupervised conditions. The results of our fall risk scoring 

system unveiled a strong correlation with the output of the clinical functional tests 

POMA and TUG (90% and 89%, respectively), which was deemed a promising 

outcome concerning the feasibility of pervasive monitoring for fall risk assessment 

in daily living. 
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Introduction 

The worldwide population aged over 65 is growing rapidly. The process of aging impairs 

mobility, muscle strength and balance, which, allied to other intrinsic (e.g. side effects 

of medication) and extrinsic (e.g. improper use of assistive devices) [1] factors, increases 

the incidence of falls among elderly citizens. The consequences of this phenomenon are 

simultaneously social, health-related and economic, motivating the search for strategies 

that properly evaluate the risk factors of falls in older people. 

Currently, there is not a standard for assessing the risk of falling. Several scales, 

questionnaires, functional tests, and protocols have been proposed in the past years to 

overcome the lack of standardized clinical and medical procedures for assessing the risk 

of fall [2], as the Timed-Up and Go (TUG) [3] and Tinetti's Performance Oriented 

Mobility Assessment (POMA) [4]. However, these procedures are often only applied 

after a first fall occurs, which influences the collected parameters. The majority of the 

proposed assessment scales and questionnaires are also subjective, self-reported, and do 

not consider several major fall risk factors. Proper methods for the objective assessment 

of individual gait, strength, and balance are confined to laboratory settings, requiring 

specialized personnel and equipment, thus leading to higher costs. Moreover, these 

solutions rely on on-time/site assessments that do not reflect the evolution of risk factors 

over time. This context discloses a gap that technology can fill through the development 

of methodologies for continuous and pervasive monitoring of fall risk parameters. 
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Some research works [5-8] have also been exploring the extraction of automatic gait 

and activity-related parameters using wearable devices as predictors of the risk of falling. 

While these have provided insightful information about the potential of daily-living 

monitoring for fall risk assessment, these solutions are based on the utilization of specific 

wearable devices, which can decrease user adherence to the system due to its 

impracticality or even simply forgetting the device. Our method, on its hand, proposes a 

smartphone utilization-based system, intending full pervasiveness of the solution, and no 

previous works were found to perform an analysis comparable to the one in this work 

(smartphone-based, multimodal, free-living, and pervasive). 

This work introduces a method for continuous fall risk assessment based on a set of 

personal information (both objective and subjective) and the extraction of automatic gait, 

physical activity and postural transition parameters. The method relies on a smartphone 

application and a scoring algorithm, whose output was compared against standard 

functional tests applied to a total of 15 users. Besides being told to use the smartphone 

with our application installed, in the pocket or belt, the users were not given any specific 

indication on system's usage and the trials were not supervised. Thus, the main 

contribution of this work consists in an assessment of the feasibility of solely relying on 

pervasively monitored and self-reported risk factors for continuous fall risk assessment 

using a smartphone, by implementing strategies to overcome the limitations of free-

living usage. 

1. Methods 

1.1. Fall Risk Assessment App 

We have developed a fall risk assessment application (FRA App) based on a continuous 

evaluation of fall risk factors using the smartphone's accelerometer and self-reported 

questionnaires, in mobile interfaces. It relies on five main fall risk categories, as follows: 

� Personal Information (PI): includes the risk factors with higher impact in falls 

[1], i.e. age, body mass index (BMI; measured as how far the person is from the 

ideal BMI value), gender, health conditions, number of prescribed medication, 

number of recent falls (last year).  

� Falls Efficacy Scale (FES): measures the fear of falling when performing daily 

living activities. This work used an adapted version of the original FES 

questionnaire for Portuguese [9]. Higher scores represent higher fear of falling, 

and the final score ranges between 0 e 10. 

� Physical Activity (PA): automatic recognition of the user's physical activity 

using the activity monitoring algorithms previously reported by Aguiar et al. 

[10]. Low activity time is associated with increased risk of falling. 

o Walking time: World Health Organization recommends that adults aged 

over 65 should do, at least, 150 minutes of moderate-intensity activity or 

75 minutes of vigorous-intensity activity during the week. 

o Resting time: represents how long a person spent seated or laying during 

the awake period of the day, which we considered to be 16 hours. 

o Number of steps: it is proportional to the activity of the user and should 

also follow the public health recommendations in terms of steps/day; 
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7,000-10,000 steps/day are estimated to be equivalent to 30 minutes of 

daily moderate-intensity activity [11]. 

o Energy: it indicates how active a person is (proportional to the activity of 

the user). 

� Gait Analysis (GA): estimation of specific gait analysis metrics using the 

activity monitoring algorithms previously reported by Aguiar et al. [10]: 

o Gait speed: computed combining the retrieved number of steps and stride 

length to estimate the travelled distance over the elapsed time. Generally, 

people walk comfortably at around 1.2 or 1.4 m/s [12]. Someone walking 

slower most probably experiences difficulties in walking, so the risk of 

falling is naturally higher. 

o Stride variability: inferred by analyzing the (ir)regularity of the 

coefficient of variation of the stride duration, which can indicate walking 

disorder and high fall risk. 

� Postural Transitions (PT): the ability to sit/stand is also an important fall risk 

factor. A signal processing algorithm was developed to detect a variation of 

orientation of the inertial sensor placed in the trousers' pocket, to determine the 

number and duration of postural transitions throughout the day. Higher number 

of transitions evidence less movement impairments, while slowly 

sitting/standing disclose problems with muscle strength and balance. 

1.2. Data Collections and Description 

We have recruited 10 people over 65 years old and 5 younger people. Seven seniors had 

a history of falls in the previous year (3 persons fell once, 2 fell twice, 2 fell 5 or more 

times). The remaining subjects did not have a prior record of falls. Initially, standard 

functional tests for fall risk assessment - TUG and POMA - were conducted with all the 

participants. Then, the volunteers used the smartphone to collect sensor data during daily 

living activities in the following 15 days. The smartphone was carried in the trousers' 

front pocket or belt during the day, for as long as possible, while executing regular daily 

living activities. The value of each computed parameter was recorded in a backend server, 

enabling remote tracking of the progress of these unsupervised trials. No additional 

information was provided to the users regarding system's usage or specific requirements. 

The full group presented a mean age of 59.1 ± 19.2 y.o., with a seniors' age distribution 

of 73.6 ± 5.97 y.o. and younger subjects with 33.2 ± 5.5 y.o. Three participants reported 

walking problems, two of them used walking aid, and another participant had an 

implanted knee prosthesis. All gave informed consent as per the Declaration of Helsinki. 

1.3. Fall Risk Assessment Scoring and Algorithm 

In order to develop a fall risk score that takes into account all of the of risk factors, two 

linear regression models were implemented. The first model (theoretical approach) was 

based on a direct distribution of categories and parameters' weights based on the 

theoretical importance of each of them in fall risk assessment, according to the odds ratio 

reported in the literature [1]. The second model (empirical approach) used a similar 

weight distribution approach, but each category/parameter was proportionally weighted 

to the correlation between that variable and the score of TUG and POMA tests. A two-

level weight assignment approach took place for both regression models: first to each 

one of the 5 risk categories and then to each parameter within a category (Table 1). While 
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some parameters are directly proportional to the fall risk (e.g. age), some other are 

indirectly proportional (e.g. gait speed). For that reason, we normalized each parameter 

value to a scale ranging from 0 to 10, where 0 is defined as the parameter’s recommended 

value (i.e. no fall risk) and 10 as the value that implies the highest fall risk. If a person 

does not use the smartphone during the day, insert the personal information or answer 

the FES questionnaire, there are parameters that we will not be able to compute. In such 

cases, their weight in the regression will be uniformly distributed by the other parameters. 

We initialize the personal information with default values in order to have a least one 

category that can be computed. Following this procedure, we are able to estimate a single 

fall risk score based on each of the modelling approaches, that outputs a daily value 

between 0 (low-risk) and 10 (high-risk). A final risk score is then computed, resulting 

from the average of the daily scores over the previous two weeks. In order to foresee 

some direct consequences of conceiving a system as pervasive and robust as possible, a 

method for handling data from days when the user did not use the smartphone or walked 

long enough was also implemented. As such, the contribution of each computed daily 

risk score for the overall fall risk score was set as a percentage which varies according 

to the number of significant risk parameters that the application was able to compute 

during such day. 

Table 1. Linear regression weights of risk categories and parameters for theoretical and empirical approaches. 

 PI Parameters GA Parameters 

Age BMI Sex Drugs Health Falls Speed Stride 

Theoretical 0.38 0.20 0.10 0.05 0.10 0.20 0.35 0.20 0.80 0.20 

Empirical 0.28 0.32 0.36 0.07 0.00 0.18 0.07 0.30 0.67 0.33 

1.4. Validation: correlation with functional tests 

In order to understand if our method for pervasive assessment of fall risk on a daily basis 

provided information as reliable as that of the most commonly used clinical functional 

tests, we studied the correlation and statistical similarity (t-test) between the output of 

our scoring algorithms and the score of TUG and POMA tests, which were applied to 

each volunteer as described in Section 1.2. Since FRA App, TUG and POMA make use 

of different scales, we mapped the scores of each assessment to a 0 to 1 range, where 0 

and 1 represent the lowest and highest risk in our dataset, respectively. The normalization 

of the output of each assessment was achieved by subtracting the minimum value to each 

instance and dividing by the difference between the maximum and minimum values. This 

step took place prior to the correlation computation, ensuring comparable values to be 

used for correlation analysis. For comparison purposes, we also computed the correlation 

between POMA and TUG tests. 

2.  Results 

We calculated the statistics for the data collected during the trial, reporting the average 

walking time, number of sits and stands, and number of analyzed days. Each person used 

PA Parameters PT Parameters FES  

Energy Walk Steps Rest Sits Stands SitT StandT Score 

0.20 0.20 0.20 0.40 0.20 0.10 0.25 0.25 0.25 0.25 0.12 1.0 

0.10 0.00 0.00 1.00 0.00 0.002 1.0 0.00 0.00 0.00 0.30 1.0 
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the FRA App for an average of 13 days and walked for almost 2 hours each day. The 

number of detected postural transitions was, on average, 9 sits and 9 stands per day. In 

56.8% of the analysed days, all information used in the FRA risk score algorithm was 

available. Only in 3.5% and 3.6% of the days the users walked less that 10min or the 

stride variability was not computed, respectively. An average of 18.3% of the analysed 

data referred to usage of the smartphone in the belt, and so the postural transitions metrics 

were not computed. In 17.8% of the days, the users did not use the App, meaning that 

the categories based on inertial measurements were not computed.  

The correlation between the risk score of the FRA App for both model 

implementations and each of the applied functional tests, POMA and TUG, were also 

computed. POMA and TUG exhibit a correlation of 0.97. Both theoretical (T) and 

empirical (E) approaches presented strong correlations with the functional tests (T-

POMA, 0.80; T-TUG, 0.79; E-POMA, 0.90; E-TUG, 0.89), and were deemed 

statistically similar to the scaled output of these assessments, presenting p-values < 0.1. 

These results support the appropriate performance of the method. 

3. Discussion 

The FRA App provided an estimation of fall risk, based on a set of parameters assessed 

pervasively using the inertial sensors of the smartphone and personal information. The 

data collection process was not supervised; we have solely asked the participants to use 

the smartphone with the FRA App for 15 days, without disrupting their normal daily 

living activities. Despite that, we were able to collect data from an average of 13 days 

per person, which is an important outcome of the study, since the users were not given 

any specific information regarding the system's usage. We were able to detect a daily 

average of 2 hours of walking time and 18 sit/stand postural transitions. These results 

support the reliability of our fall risk model, since the parameters that are considered for 

the fall risk estimation are based on a significant amount of data, even when collected in 

uncontrolled settings.  

The empirical approach presented the strongest correlation with both standard 

assessments. This approach did not consider some of the parameters weighted under the 

theoretical approach. In fact, regarding physical activity and postural transitions 

categories, only one parameter for each was considered. This fact does not indicate that 

our method and results contradict previous works under which our theoretical 

assumptions were made, but it could indicate that there are parameters that have higher 

importance for pervasive fall risk assessment solutions than others. This conclusion is 

very promising, since it leads to a reduction of the number of parameters to compute.  

Another relevant aspect relates with the success of our weighting method for 

handling days in which there was not enough information for reliably estimating all 

necessary parameters. In our trial, more than 57% of the analysed days included 

information from the five risk categories and only a small amount of days (18%) included 

solely self-reported data. This strategy to overcome the limitations of free-living usage 

of a fall risk scoring system was never reported by previous literature and can be 

considered as one of the main contributions of this work. This was a difficulty of 

developing a fully pervasive algorithm, that does not impose conditions on the user's 

daily habits or activities. As such, we believe that this outcome is very enlightening 

concerning the analysis of the feasibility of pervasive fall risk assessment in free-living 

conditions. However, stronger conclusions should be obtained in a different and larger 
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subset of users, which should be set as future work. The modest number of participants 

is, however, a limitation of this study. Nevertheless, we believe that their diversity 

decreased the bias of the test-bed, since approximately half of the subjects experienced 

falls in the previous year, and there was representation of several types of walking 

disabilities and subjects without movement impairments. Therefore, despite requiring 

further validation to fully assess the success of the method, this study discloses an 

important outcome towards understanding the feasibility of pervasive fall risk 

assessment solutions. Also, despite the adequate user adherence to system usage during 

the trials, further research should be carried to address specific challenges, like 

maximizing smartphone usage, which seniors may forget, or having to place the 

smartphone in a specific position (to assess postural transitions). 

4. Conclusions 

This work presented a new algorithm for continuous fall risk assessment in full free-

living conditions. The system relied solely on a smartphone application, and its 

utilization on a daily basis did not impose any restriction on the users' habits. A 

comparison between approaches of theoretical vs. empirical basis was also performed, 

indicating that some parameters of theoretical importance may not be paramount for 

pervasive fall risk assessment using our method. The fall risk scores obtained by our 

method presented strong correlations of 90% and 89% with clinical functional tests 

POMA and TUG, respectively, supporting that pervasive monitoring of fall risk-related 

parameters with a smartphone enables reliable fall risk assessment. As future work, we 

intend to extend our validation process with more users, in order to study the validity of 

our conclusions and the generalization of the method considering a broader population. 
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