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Abstract. A lower-extremity exoskeleton can facilitate the lower limbs’ 

rehabilitation by providing additional structural support and strength. This article 

discusses the design and implementation of a functional prototype of lower 

extremity brace actuation and its wireless communication control system. The 

design provides supportive torque and increases the range of motion after 

complications reducing muscular strength. The control system prototype facilitates 

elevating a leg, gradually followed by standing and slow walking. The main control 

modalities are based on an Artificial Neural Network (ANN). The prototype’s 

functionality was tested by time-angle graphs. The final prototype demonstrates the 

potential application of the ANN in the control system of exoskeletons for joint 

impairment therapy.   

Keywords. Lower-extremity, exoskeleton, control system, neural network, Keras, 

walking. 

Introduction 

Contrary to a healthy human skeleton, which supports the body internally, the 

exoskeleton brace is a device supporting the body externally. Exoskeletons are usually 

designed to allow patients with mobility disorders to walk or increase strength and 

endurance [1]. Exoskeletons have several key components. Firstly, the frame, is usually 

made of lightweight materials. It must be strong enough to support the weight of the 

body, as well as the weight of the exoskeleton and its components [2]. Secondly, sensors 

are needed to capture information about how the user wants to move. A controller, then 

controls the exoskeleton´s actuators. The controller is an on-board computer which takes 

and processes the information captured by the sensors. This computer coordinates the 

actuators in the exoskeleton and allows the exoskeleton and its user to stand, walk, climb 

or descend [3]. The applied control algorithms are one of the key elements of the system 

which enables the user to optimize movement. 

Model-based control systems for exoskeletons are nowadays commonly used. They 

form part of a dynamic model which can be obtained by identifying the system involved 

in the movement and then replicating its behavior [4]. Another approach is to drive the 
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exoskeleton by a Finite state machine. These algorithms are based on states and 

transitions. To reach a certain outcome, the control system must undergo several 

transitions. They have been used in combination with a foot pressure sensor determining 

whether the system should provide a supportive movement [5]. The gait phase 

classification method based on neural networks (NN) using sensor signals and foot force 

sensors to classify gait phases was designed in 2015, see [6]. The Neural Network 

Toolbox in MatLab 2015 was experimentally used for the NN design [6]. Exoskeletons 

in gait rehabilitation are often designed to assist limited movements caused by adverse 

conditions.  

This article aims to describe the prototype’s design and control system based on NN 

made using the Keras Python library [7]. The lower extremity brace was developed by 

the Faculty of Biomedical Engineering, Czech Technical University in Prague in 

cooperation with Prokyber Ltd. The actuator and control system are expected to support 

upright standing and allows slow walking by generating supportive torque in the 

weakened muscles caused by conditions like Arthrofibrosis. The implemented result 

should be a functional prototype of lower extremity brace control system based on NN. 

1. Methods and Systems 

1.1. Exoskeleton Structure 

The mechanical structure of the smart brace mostly of aluminum, was designed to 

resemble the biomechanical pulley system of the human knee. It is equipped with three 

links and two revolving joints. The three exoskeleton links simulate the structure of the 

human leg consisting of a foot, shank and thigh; the two revolving joints correspond with 

the ankle movement serving as a pivot and a support point. The knee, actuated by this 

mechanism consists of gears and pulleys as shown in Figure 1.  

 

 
Figure 1. Two DOF lower-extremity exoskeleton 

The structure of the exoskeleton is designed to reduce stress in the muscles and knee 

joint caused by lifting the upper body and thigh linked to the exoskeleton, including all 

of its components. The required torque for the smart brace was approximated using a 

basic free body diagram and the calculated moment applied onto the joint [8]. The 

resulting torque of 21.2 Nm was used for the reference to select the appropriate actuator. 

D.S. Martinez Lema et al. / Control System of a Lower-Extremity Exoskeleton92



Having reviewed the latest and state of the art equipment available, it was determined 

that - due to the high accuracy, torque provided and its open loop - a bipolar stepper 

motor would be most suitable for this application.  Based on the structural analysis, the 

stepper motor LDO-60STH86-3004A, manufactured by LDO Motors was selected. The 

torque rating of this motor is 2.75 Nm at low rpm, however, when multiplied by the gear 

ratio of the actuation mechanism, a final torque of 30.25 Nm was obtained. This value is 

higher than the required torque of 21.1 Nm. Based on these findings, the actuation system 

would be able to lift the applied load and generate supportive torque. The Rotary encoder 

BHK 16.05A.0500-I2-5, manufactured by BHK, was selected to determine the angular 

position of the leg. This encoder was chosen due to the high precision given by the 

number of pulses per revolution (500 pulses per revolution) and the fact that it operates 

at 5V, which is the voltage used by most microcontrollers.  

1.2. Control System 

STMicro STM32 F446 is the microcontroller board used in this prototype.  It exploits a 

customized firmware developed specifically to control smart braces. The embedded 

functions of this firmware operate at input and output values stored in its registers. The 

system is controlled by a computer using the Ubuntu PC Linux 20.04LTS operating 

system for making decisions, sending R/W requests and receiving responses via Modbus 

RTU from the STM32, operating in a master-slave mode with the device.  

The control system is based on the input of the encoder’s pulses from its terminals. 

Internally, the signals from the encoder are transformed into a degree value and assigned 

to a register where they can be read when needed. Some pins serve as digital inputs, and 

derive the binary state from the buttons, for control. As an output the STM32 sends three 

different pulses to the stepper driver denominated: Direction, Enable and Pulse to control 

the stepper motor. These rectangular pulse signals are in the range of 0V to 5V. The 

stepper driver DM805-AI (manufactured by Leadshine) was selected as it matches the 

current rating of 3A required by the stepper motor and for the diversity of control 

modalities it allows. This combination proved to be particularly useful in the stage of 

actuator prototyping of the Pulse/Direction functions. To enable access and run the main 

functions, the control algorithms read and write values from the STM32 registers via 

Modbus RTU communication, while using their respective addresses. Since the functions 

use a hexadecimal notation, a specific function, transforming them into floating point 

values and reversely, was implemented. In this form they were used throughout the 

Python control algorithms. 

An algorithm based on an artificial neural network (ANN) was designed, trained and 

adapted for control purposes when the intention of movement was to be detected. The 

algorithm used for NN modelling was designed by using the Keras Python library [7]. 

To employ a NN for the detection of movement intention in the smart brace, it was also 

necessary to identify and analyze multiple sources of information to identify the 

movement desired.  The sources for ANN are the angular displacement Δθ of the encoder 

and the binary states of the interrupters initially placed on the exoskeleton’s foot support 

belt and on the base. This data is used as the input features of the model.  The evaluation 

of leg movement led to the assumption that when the user intends to flex the leg, the 

angle difference is negative and smaller than some threshold value of -15. Reversely, if 

the user intends is to extend the leg, the angle difference is positive and bigger than some 

threshold value of 15. Both of these assumptions take into consideration that if a user 
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does not press any of the buttons but still tries to move, the angle displacement Δθ will 

always mean that the user has the intention of movement. If the angle difference is 

negative and Button 1 on the foot belt is pressed, the system should become more 

sensitive given that it would have more information to decide that the user is trying to 

flex their leg. This would be achieved by reducing the threshold value from -15 to -10. 

The same would occur if Button 2 was pressed while trying to extend the leg; the 

threshold value would get reduced from 15 to 10. In addition to these instances, the 

buttons may be pressed accidentally, opposite to the intended direction of movement. 

However, as the encoder's position considered this to be a movement, and while plausible, 

it can only be activated after accidentally pressing Button 2 for contraction and 

surpassing a threshold greater than -25 or accidentally pressing Button 1 for extension 

and surpassing a threshold of 25. These levels were chosen a safe margin of error and 

was designed to protect the user. 

If a given movement is between the ranges of the positive and negative thresholds, 

the system cannot determine whether the user wants to move the leg at all and no 

movement is generated. After the intention to move the leg is detected, there are three 

possibilities to choose from: to flex, extend or stop the smart brace movement. These 

outcomes were used as different classes for the classification of the user´s intention and 

as a simplified estimate of the classes relevance labeled as Very high, High, Very low 

and Low. 

 

 

Figure 2. Designed NN for lower-extremity exoskeleton control 

To train ANN for classification purposes requires a reasonable amount of testing 

data. Such data is, however, currently not available.  To collect it, the smart brace would 

have to be tested on many occasions, on many users and under various circumstances.  

Although comprehensive data mining is beyond the scope of this paper, it is possible to 

test the potential of this model detecting the intention of movement by generating 

synthetic data based on the input features and the expected class outputs defined above. 

This is done with the intention to transfer learning to the live data provided by the smart 

brace’s sensors [9]. To create the data, the thresholds were placed on a table in such a 

manner that at the threshold value the class with preference has a probability value close 

to 0.5, which represents half of the total probability. Then the probability of the class 

with preference is extended incrementally by a factor of 0.2. This increment is parallel 

to the angle displacement until the value reached is equal to the total probability of 1, 

from this point the probabilities of the other classes are set to zero. The class preference 

has the highest probability to become the outcome depending on the input. The values of 

the Extend and Stop classes are calculated by subtracting the total probability of 1 and 

the value of the class with preference, time a scaling factor. 

The neural network receives three input features, see Figure 2. The decision with the 

highest probability of whether the user wants to contract, extend, or stop a movement is 

selected by means of an Argmax function.  
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Initially, a CSV file is uploaded with the synthetically generated data to train the 

network by separating the input data from the output values. The Adam gradient descent 

optimizer is used, where - after getting a prediction - the algorithm goes back to make 

the necessary adjustments to the weights based on how accurate the model is. The 

acquisition of new predictions continues until the model has become more accurate.  

1.3. Testing of the control system 

For the ANN based leg rises modality the model was initialized and weights were loaded 

into it. Then the initial angular position of the encoder was read followed by a delay. The 

purpose of the delay is to give the system some time to identify whether the position has 

changed. Following this step, the actual position is read and the angular displacement Δθ 

is determined by calculating the actual position minus the initial position. Next, the state 

of the input buttons is read and put into an array with the angular displacement Δθ. This 

array is passed through the trained neural network and an Argmax function. The Argmax 

function returns the index of the class with the highest probability. This index value is 

assigned to the action variable and is read by the if statements; it determines the action 

to be taken by the system. If the action is equal to 0 the flexion movement is generated. 

If the action equals 1, the extension movement is the outcome. Finally when the action 

equals 2, the stop action occurs. These functions are followed by a delay to allow the 

system to preform them. The flowchart for this algorithm is described on Figure 3. 

 

 
Figure 3. Simplified flowchart of the leg rises control algorithm based on an ANN. 

2. Results 

The algorithms were written in the Python programming language and use the functions 

of several libraries. The PyModbus library is used to read the encoder degrees, button 

signals and activate the stepper motor by Modbus RTU communication. The NumPy 

library for mathematical operations with arrays and Keras library to initialize the ANN 

and load the pre-trained weights were also used. Three control modalities were proposed 
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to allow leg lifting. The result of testing the design of the control system is knee angle 

control using neural networks, see Figure 4. 

 
Figure 4. Example of ANN application for mediating leg lifting. 

3. Conclusion 

The work described above proved that the novel method of control system based on ANN 

made with the Keras Python library can be used for the control system of lower-extremity 

exoskeletons to treat joint impairments. This is the first time that an ANN made with the 

Keras Python library is described and utilized in a lower-extremity smart brace. The 

results obtained through preliminary testing need be followed by clinical tests before 

practical application can occur in clinical practice. However, as already stated, it is 

beyond the focus of the article but the authors feel the first important step has been taken. 
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