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Abstract. Multidisciplinary and highly dynamic pHealth ecosystems according to 
the 5P Medicine paradigm require careful consideration of systems integration and 
interoperability within the domains knowledge space. The paper addresses the 
different aspects or levels of knowledge representation (KR) and management (KM) 
from cognitive theories (theories of knowledge) and modeling processes through 
notation up to processing, tooling and implementation. Thereby, it discusses 
language and grammar challenges and constraints, but also development process 
aspects and solutions, so demonstrating the limitation of data level considerations. 
Finally, it presents the ISO 23903 Interoperability and Integration Reference 
Architecture to solve the addressed problems and to correctly deploy existing 
standards and work products at any representational level including data models as 
well as data model integration and interoperability. 
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Introduction 

For improving safety and quality of care as well as efficiency and efficacy of care 
processes under the current demographic, social, and economical constraints, healthcare 
systems undergo organizational and methodological paradigm changes. The first 
paradigm change describes the transition from organization-centric through disease-
specific process controlled to person-centric care, and the latter that from the 
phenomenological perspective of general care through dedicated care for patient groups 
with specific clinically relevant conditions towards personalized, participative, 
preventive, predictive precision medicine (5P Medicine). Systems and services following 
the 5P Medicine paradigm will be in the course of the paper called pHealth systems and 
pHealth services. Appropriate pHealth services provided to the subject of care are 
defined by its individual health status, conditions and expectations, as well as genetic 
and genomic dispositions in their personal social, behavioral, environmental, and 
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occupational context. Table 1 summarizes objectives and characteristics of pHealth and 
methodologies and technologies for meeting them [1]. 

 

Table 1. pHealth objectives, characteristics and methodologies/technologies to meet objectives, after [2] 

Objective Characteristics Methodologies/Technologies 
Provision of health services 
everywhere anytime 

� Openness 
� Distribution 
� Mobility 
� Pervasiveness 
� Ubiquity 

� Wearable and implantable 
sensors and actuators 

� Pervasive sensor, actuator and 
network connectivity 

� Embedded intelligence 
� Context awareness 

Individualization of the system 
according to status, context, 
needs, expectations, wishes, 
environments, etc., of the 
subject of care 

� Flexibility 
� Scalability 
� Cognition 
� Affect and Behavior 
� Autonomy 
� Adaptability 
� Self-organization 
� Subject of care 

involvement 
� Subject of care centration 

� Personal and environmental 
data integration and analytics 

� Service integration 
� Context awareness 
� Knowledge integration 
� Process and decision 

intelligence 
� Presentation layer for all 

actors 

Integration of different actors 
from different disciplines/do-
mains (incl. the participation/ 
empowerment of the subject of 
care), using their own 
languages, methodologies, 
terminologies, ontologies, 
thereby meeting any behavioral 
aspects, rules and regulations 

� Architectural framework 
� End-user interoperability 
� Management and 

harmonization of multiple 
domains including policy 
domains 

 

� Terminology and ontology 
management and 
harmonization 

� Knowledge harmonization 
� Language transformation/ 

translation 
 

Usability and acceptability of 
pHealth solutions 

� Preparedness of the 
individual subject of care 
Security, privacy and trust 
framework 

� Consumerization 
� Subject of care 

empowerment 
� Subject of care as manager 
� Information based 

assessment and selection 
of services, service quality 
and safety as well as 
trustworthiness 

� Lifestyle improvement and 
Ambient Assisted Living 
(AAL) services 

� Tool-based ontology 
management 

� Individual terminologies 
� Individual ontologies 
� Tool-based enhancement of 

individual knowledge and 
skills 

� Human Centered Design of 
solutions 

� User Experience Evaluation 
� Trust calculation services 

 
More details can be found in the papers published in the pHealth conferences series 

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], in other proceedings [13, 14, 15, 16, 17] and in specific 
journal publications or books such as [1, 18, 19, 20]. The pHealth service delivery is 
inseparably bound to the ongoing technological and methodological paradigm changes 
such as mobile, micro-, nano-, bio- and molecular technologies, big data and business 
analytics, artificial intelligence and autonomous systems including robotics, etc., but also 
new computing technologies such as cloud, cognitive and edge computing. Table 2 
presents a more complete list of technologies, methodologies and principles for 
transforming healthcare ecosystems to pHealth. The described organizational, 
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methodological and technological paradigm changes affect granularity, complexity and 
maturity of health systems as well as the maturity levels of the underlying processes, 
resulting in the transition from empiric through evidence-based to translational medicine, 
or in other words as transition from an observational (subjective) through an analytical 
(objective) to an integrated pHealth approach. 

 

Table 2. Technologies, Methodologies and Principles for Transforming Healthcare Ecosystems 

• Mobile technologies, biotechnologies, nano- 
and molecular technologies 

• Big data and business analytics 
• Integration of analytics and apps 
• Assisting technologies � Robotics, 

autonomous systems 
• Natural Language Processing � Text 

analytics � Intelligent media analytics 
• Knowledge management (KM) and 

knowledge representation (KR) � Artificial 
intelligence (AI) � Artificial common 
(general) intelligence � Intelligent 
autonomous systems 

• Security and privacy, governance, ethical 
challenges, Education � Asilomar AI 
Principles 

• Cloud computing, cognitive computing, social 
business 

• Edge computing as a "family of technologies 
that distributes data and services where they 
best optimize outcomes in a growing set of 
connected assets“ (Forrester Research),  

• Virtual reality and augmented reality, thereby 
blurring “the boundaries between the physical 
and digital worlds“ (Gartner). 

• Creation of IoT-Platforms and app-ecosystems 
• Patient-generated health data ecosystem � 

multiple, dynamic policies 
• Web content management � Digital experience 

management 
• Data bases � NoSQL technologies � Data 

warehouses � Graph DBs � Data lakes 
• EHR includes genomic data 
• Specifications � Implementation � Tooling 

� Testing � Certification 

1. Methods 

The 5P Medicine approach as introduced above requires advanced communication and 
cooperation between different disciplines and their actors (persons, organizations, 
devices, applications, components), thereby bridging between their different 
perspectives and contexts, the related different methodologies, terminologies and 
ontologies, but also their different levels of maturity, knowledge, experiences, skills, etc. 
The paper addresses requirements and solutions for knowledge-based interoperability 
necessary for multidisciplinary complex and dynamic pHealth ecosystems and 
demonstrates the limitations of data sharing and health information exchange (HIE) 
paradigms. For that purpose, it considers knowledge representation (KR) and knowledge 
management (KM) from different perspectives such as theory of knowledge, cognitive 
sciences and philosophy, abstraction and expressivity of languages and scope-specific 
grammars, enterprise architectures, modeling good practices, data modeling, system 
development processes, etc., thereby discussing opportunities and limitations of 
approaches. It provides solutions for overcoming the gap between the current practice of 
static models and the need for dynamic, flexible, non-deterministic and adaptive models 
representing the pHealth paradigms. An advanced and comprehensive solution, the 
interoperability and integration reference architecture model and framework, developed 
by the first author and standardized at ISO/TC215, is introduced and discussed in some 
detail. 
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2. Foundations of Knowledge Representation 

There are multiple definitions of knowledge. Alter defines knowledge as “a combination 
of instincts, ideas, rules, and procedures that guide actions and decisions” [21]. The 
Merriam-Webster Online Dictionary defines knowledge as “the sum of what is known: 
the body of truth, information, and principles acquired by mankind” [22]. According to 
Davenport, knowledge is "information combined with experience, context, 
interpretation, and reflection. It is a high-value form of information that is ready to apply 
to decisions and actions" [23]. Other definitions focus more on the human mind’s aspect. 
The different knowledge classes such as classification-based knowledge, decision-
oriented knowledge, descriptive knowledge, procedural knowledge, reasoning 
knowledge, or assimilative knowledge should not be detailed here.  

The representation of reality following the theory of knowledge or cognitive theory 
requires the move from cognition/sense-perception to conceptualization [24]. According 
to Doerner, domain knowledge consists of reproducible and reliable models of a domain, 
i.e. models which can be justified and repeatable formulated in the domain of discourse 
(discipline) [25]. Knowledge of a discourse domain, representing that domain’s 
perspective on reality to facilitate reasoning, inferring, or drawing conclusions, must be 
created, represented, and maintained by domain experts using their methodologies, 
terminologies and ontologies.  

Since the late 1990ies, ontologies have been a key strategy in encoding, using and 
sharing knowledge in computer sciences [26]. Following Guarino, an ontology, can be 
seen as the study of the organization and the nature of the world independent of the form 
of our knowledge about it [27]. From the modeling perspective, three levels of 
knowledge representation are distinguished and must be consecutively processed: a) 
epistemological level (domain-specific modeling), b) notation level (formalization, 
concept representation), c) processing level (computational, implementations) [25]. A 
model is thereby defined as a representation of objects, properties, relations and 
interactions of a domain, enabling rational and active business in the represented domain. 
The generalization of domain-specific epistemological models requires their 
transformation into a universal KR notation. The outcome must be validated on the real 
world system and thereafter adopted if needed (Figure 1) [25].  

 

 
Figure 1. Knowledge representation development process (after [25]). 
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Deploying KR techniques such as frames, rules, tagging, and semantic networks, a 
good KR has to manage both declarative and procedural knowledge. 

Another concept in the cognitive theory is intelligence, which is established by four 
fundamental principles: data, information, knowledge, and wisdom (frequently 
summarized as intelligence). The basis of intelligence is data, i.e. measures and symbols 
of the world gathered through observation and investigations. Collected by various 
sensors and organs, data are represented as external signals, facts, quantities, etc., 
forming the structural part of intelligence. At the next level, data are interpreted 
producing information as the second principle of intelligence. Attaching meaning to data 
represents the semantic level of intelligence, enabling decision-making. At the third 
level, knowledge allows the subjective, purpose- and context-specific interpretation of 
information to derive actions. Wisdom provides awareness, insight, moral judgments, 
and principles to validate/improve existing as well as to create new knowledge. 
Knowledge modeling combines data or information into a reusable format for the 
purpose of preserving, improving, sharing, aggregating and processing knowledge to 
simulate intelligence [28]. 

3. Knowledge Representation Principles and Practices 

KR is first of all a substitute or surrogate for a real thing to allow reasoning about the 
world rather than taking action in it. For a deeper understanding of knowledge 
representation, it is useful to look at how knowledge is composed and what the relevant 
properties of knowledge and its components are. Floridi provides a definition that is 
closely linked to his theory of both information and data. Hence, it is of particular interest 
to the knowledge representation and knowledge management communities. In Floridi’s 
theory, knowledge is the meaningful associate of factual semantic information. The latter 
is defined as follows: “p qualifies as factual semantic information if and only if p is 
(constituted by) well-formed, meaningful, and veridical data.” It is important to note that 
Floridi’s notion of well-formed data is not restricted to refer to syntactically well-formed 
data in the sense of grammar, which would point to a more digital interpretation of what 
he means by data. He specifically states that he refers to anything that determines the 
form, construction, composition, or structuring of something, be it a machine, a movie, 
a painting, or a garden. He uses the term syntax, which is what determines whether 
something is well-formed in an extremely broad sense. In addition, his definition refers 
to the meaningfulness of the data. Meaningful data is also called semantic content. 
Semantic content can be either instructional (describing actions to be taken, typically to 
achieve a certain aim) or factual (describe the state of affairs in the world). Floridi’s 
definition entails a number of aspects relevant to our investigation: a) Factual semantic 
information (and thus knowledge) is not restricted to statements or sentences. Pictures, 
diagrams, etc. may also be part of knowledge. Hence, the use of “veridical” over “true”. 
b) False information is, indeed not information, and hence not part of knowledge. [29] 

Similarly, Schulz distinguished between ontological knowledge (axioms that are 
universally true), symbolic knowledge (statements about properties and meaning of signs 
of language), factual knowledge (statements about concrete entities and their 
relationships) as well as contingent knowledge (probabilistic and default statements, 
uncertainty) [30]. 

To enable reasoning about the world, KR provides a set of signs to represent the 
objects, phenomena and processes of interest. The assigning of the relationship between 
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sign and entity that is pointed to by the sign is charging the signs with meaning. This is 
typically done using the methodologies of model theory and in the process ontological 
commitments are formed and expressed. KR provides a theory of reasoning, composed 
of (a) the representation’s fundamental conception of intelligent reasoning, (b) the set of 
inferences the representation sanctions (the proof theory), and (c) the set of inferences it 
recommends. Furthermore, KR supports pragmatically efficient computation by properly 
organizing information to facilitate making the recommended inferences. Finally, KR is 
a medium for human expression by defining the language to represent the world. For 
realizing those functions and objectives, KR deploys knowledge representation 
technologies such as rules, logic, frames, semantic nets, etc. [31]. 

Nonaka and Takeuchi have analyzed the dynamics of knowledge creation, 
particularly the importance of tacit knowledge and its conversion into explicit knowledge. 
Externalization is a process of converting tacit knowledge into explicit concepts through 
the use of abstractions, metaphors, analogies, or models [32]. 

4. The Language Challenge of Knowledge Representation 

This section summarizes insights provided in different papers such as [16, 33, 34]. 
According to [35], an ontology is a content specification of a particular domain, where 
the domain can be of any kind. Thus, an ontology can be described as “an explicit 
specification of a conceptualization” [36] or as “a shared explicit formal specification of 
domains of knowledge” [37]. According to Gruber [38], an ontology provides a formal 
explicit specification of a shared conceptualization of a domain of interest. It describes 
an ordering system of entities of a domain with their concepts, functions, and relations. 
A concept is a knowledge component the expert community has agreed on. A concept 
must be uniquely identifiable, and independently accepted by experts and users. It has a 
representation and can be specialized and generalized. Thereby, knowledge can be 
represented at different levels of abstraction and expressivity, ranging from implicit 
knowledge (tacit knowledge) up to fully explicit knowledge representation, i.e. from 
natural language up to universal logic. Expressivity is the key factor when selecting an 
appropriate KR. A more expressive knowledge representation language enables an easier 
and more compact expression of knowledge within the KR semantics and grammar. 
However, there is a trade-off between expressivity and practicality [39]. Expressive 
languages probably require more complex logic and algorithms to construct equivalent 
inferences. This leads to a complexity problem of formal language and reasoning systems 
with the lack of computability, at the same time losing the consistency of the language 
system. In summary, highly expressive KRs are less likely to be complete or decidable, 
while less expressive KRs may be complete or decidable. Therefore, natural languages 
are not only efficient in representing meaning, shared knowledge, skills, and experiences 
assumed. They also provide an optimum between restriction to special structure and 
generative power enabling the rich and nevertheless decidable representation of real-
world concepts, supported of course by common sense knowledge. This is one of the 
reasons for representing facts and knowledge about a system and its domain-specific 
subsystems, their architecture and behavior by deploying natural-language-based 
domain-specific terminologies and concepts using domain-specific ontologies, 
extensively exploited in good modeling best practices. Context-free grammars, originally 
used to define the structure of syntax for programming languages, cannot express static 
semantics. One way to overcome these limitations is the deployment of context-sensitive 
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grammars, by Chomsky proposed for describing NL, thereby embedding constraints and 
contexts in their rules. Alternatively, other grammatical models have been introduced to 
enhance the expressive power of programming languages. Syntax and static semantics 
of a small typed programming language has been defined by a grammar with contexts, 
however facing the complexity and consistency problem [40]. In summary: The 
difference between formal and natural languages – or between logic and natural language 
– is semantics, but even more pragmatics. There is a sound relation between logic and 
NL if logic is understood in a minimalist sense: providing a semantics for logical words, 
which needs to be enriched by pragmatic processes [41]. For more information on KR 
and KM see, e.g., [5, 16, 33]. 

When implicit knowledge contained in ontologies is made available and new 
knowledge is derived, the use of first-order-logic-based languages leads to the problem 
of non-determinability or semi-determinability. Languages are determinable if their 
characteristic function can be fully or at least partly calculated. Therefore, for knowledge 
management, determinable, sufficiently expressive first-order-logic subsets are used: the 
description logics. They provide well-defined formal semantics without variables in the 
formalism of predicates. Concepts, roles and individuals, as existent in the real world, 
can be described independently of each other [37]. 

Humans’ communication is further enriched by means such as semantics enhanced 
by gestures, mimics, social or psychological signals. To reduce the gap between human 
and technical communication especially in the demanding healthcare domain, 
multimodal interfaces have been tested [42, 43]. Landgrebe and Smith have also 
highlighted the limitations of machine communication vs. human dialog and human 
language [44]. 

The Chomsky Hierarchy as important contribution to the formal language theory 
(FLT) describes a set of classes or types of grammars with different levels of constraints 
for production rules resulting in different levels of complexity of the related languages 
[45]. The level of constraints applied to grammars, and so the level of complexity of the 
language built, decreases from Type 0 (unrestricted grammar / computably enumerable 
languages) through Type 1 (context-sensitive grammar / context-sensitive language) and 
Type 2 (context-sensitive grammar / context-free language) up to Type 3 (regular 
grammar / regular language), so forming a subset of the prevailing lower-typed grammar 
and lower-typed language. Meanwhile, the Chomsky Hierarchy has been refined into 
additional sub-classes through extending the class of context-free languages and regular 
language by mildly context-sensitive language and sub-regular language subclasses [46].  

Because of their simpler syntactical and semantical properties, programming 
languages follow a higher-typed grammar than natural languages. However, the terms 
“context-sensitive” and “context-free” used here should not be mixed up with the non-
FLT terms used in the description of systems, use cases and scenarios. 

5. Good Modeling Practices 

The representation of the system covering the subject of care and the processes of 
analyzing and managing his or her health must consider all levels of its structural 
granularity and related behavioral aspects [1]. Structurally, we have to consider the 
continuum from elementary particles to population, functionally deploying the 
methodologies of the multiple disciplines providing perspectives on pHealth ecosystems. 

B. Blobel et al. / Why Interoperability at Data Level Is Not Sufficient for Enabling pHealth? 9



A model is a simplified reflection of reality. It conceptually represents empirical 
objects, phenomena and processes in a logical and objective way. Typically, a model 
deals just with some aspects of reality. Therefore, Alter defined a model as partial 
representation of reality restricted to attributes the modeler is interested in according to 
the purpose of modeling, the addressed audience, etc. [21]. Similarly, Langhorst et al. 
[47] introduced a model as an unambiguous, abstract conception of some parts or aspects 
of the real world corresponding to the modeling goals. Consequently, two models of the 
same phenomenon may be essentially different due to differing requirements of the 
model's end users as well as behavioral, conceptual or contextual differences (e.g. 
knowledge, experiences, skills, etc.) among the modelers and to contingent decisions 
made during the modeling process [48]. For overcoming related problems when 
integrating different KR models, good modeling design principles such as orthogonality, 
generality, parsimony, and propriety [34] must be met. This requires that the relevant 
stakeholders shall define the provided view of the model, including the way of 
structuring and naming the concepts of the problem space. After capturing key concepts 
and key relations at a high level of abstraction, further abstraction levels will be used 
iteratively. However, the first iteration must be performed in a top-down manner to 
guarantee the conceptual integrity of the model [47]. The demonstrated good modeling 
practices hold for every new use case or new context to be represented including new 
aggregation of models. 

6. Data Modeling 

A data model is a visual representation of the people, places and things of interest to a 
business. It is used to facilitate communication between business people and technical 
people. A data model is composed of symbols that represent the concepts that must be 
communicated and agreed upon [49]. 

There are different levels of data models [49, 50]. On top, called the Very High 
Level Data Model, is the External Information Level or viewpoint. It describes the reality 
from a particular perspective for a particular purpose. It addresses business experts / users. 
At the next level, called the High Level Data Model, the Conceptual Information Level 
determines the relevant information and defines the basic concepts and their relationships, 
i.e. the business logic. That way, the business requirements can be collected and 
presented, and the basic concepts can be understood. The High Level Data Model 
addresses business users as well as problem analysts. The Logical Data Model (Logical 
Information Level) represents the platform-independent models, addressing business 
analysts and architects/designers. The Physical Data Model (Physical Information Level) 
represents the platform-specific models, addressing architects, database administrators 
and developers. Another approach for interrelating the different model levels uses the 
dimension of modeling from the 1-dimensional data modeling through information 
modeling, knowledge modeling up to the four-dimensional knowledge space 
representation [51], allowing for transformation between the different representation 
levels. The knowledge dimension covers the knowledge of one domain. The knowledge 
space dimension represents multiple domains’ concepts and their relations, so enabling 
their mapping. The higher the dimension, the more the modeling process is dominated 
by business domain experts. Sirpur proposes a three level data modeling architecture, 
consisting of a conceptual model, a logical data model, and a physical database model 
[52]. A similar approach is proposed by CIMI Corporation [53] with the three data 
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modeling phases conceptual model, logical model, and physical model, however 
integrating in the conceptual model things like organizations, people, facilities, products 
and application services, that way presenting somehow a Very High Level Data Model. 
However, this is done inconsistently by mixing domain ontologies with ICT ontology at 
one model level.  

7. Business Modeling and Enterprise Architecture 

Most of the early business modeling and enterprise architecture specifications have been 
developed by companies and industry consortia. Also, formal Standards Developing 
Organizations developed data modeling architectures. Many of them follow the 
conceptual model of architectural description defined in IEEE 1471:2000 [54], which 
has further evolved to the conceptual model of an architectural description according to 
ISO/IEC/IEEE 42010:2011 [55] (Figure 2).  

 

 
Figure 2. Conceptual model of architectural descriptions [13], changed after [55]) 

 
IEEE 1471-2000 [54] and its generalization to ISO/IEC 42010:2011 [55] define an 

architecture as “the fundamental organization of a system embodied in its components, 
their relationships to each other, and to the environment, and the principle guiding its 
design and evolution.” According to those standards, a stakeholder is an individual, team, 
or organization (or classes thereof) with interests in, or concerns relative to, a system. 
Following this definition, an advanced approach to intelligent, knowledge-based 
ecosystems has been developed and currently standardized at ISO/TC215 as ISO 23903 
Health Informatics – Interoperability and Integration Reference Architecture [56]. 

Another architectural approach to represent development processes of systems and 
solutions for open distributed processing is ISO/IEC 10746 [57]. It defines the 
representation of different views from the enterprise perspective describing the (IT) 
system in question (enterprise view), its platform-independent informational 
representation (information view) and computational aggregation (computational view), 
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followed by the platform-specific engineering view (implementation) and technology 
view (deployment). The different views are represented through different languages with 
different grammars depending on the intended level of complexity and semantics to 
properly consider context, implicit knowledge, etc. Table 3 provides examples of 
representation tools (languages and grammars) to intendedly represent the different 
views. 

 

Table 3. Representation tools for the different ISO 10746 viewpoints 

Viewpoint Language/Grammar 
Business View Business Process Modeling Language (BPML) 
Information View Unified Modeling Language (UML),  

Object Constraint Language (OCL) Computational View 
Engineering View Programming languages with different levels of 

grammar Technology View 

 
An overview of alternative architectural models and frameworks such as the 

Zachman Framework for Enterprise Architecture [58], Reference Architectures for 
Service-Oriented Architecture (SOA) specified by The Open Group [59] or IBM [60], 
The Open Group Architecture Framework (TOGAF) [61], and many others is provided 
and in details discussed in [7].  

8. A Reference Architecture Model and Framework for Representing pHealth 
Ecosystems 

Translational medicine requires the advancement of communication and cooperation 
from data level (data sharing) to concept/knowledge level (knowledge sharing). This 
chapter shortly introduces the ISO 23903 Interoperability and Integration Reference 
Architecture model and framework for advanced interoperability in pHealth ecosystems. 
ISO 23903 is a system-oriented, architecture-centric, ontology-based, policy-driven 
approach including development processes following ISO 42010 and ISO 10746. 
Thereby, it extends the latter and details OMG’s Model Driven Architecture (MDA) 
Computation Independent Modeling [62]. The approach enables cross-domain concept/ 
knowledge sharing, mapping as well as integration of, and interoperability between, 
independently developed specifications and related products by transferring proprietary 
into standardized concept representations without requiring any revisions of those 
artifacts (Figure 3). The approach shows similarities with communication standards such 
as HL7, EDIFACT, ebXML, etc., enabling data sharing between independently 
developed applications with proprietary data format by transferring them into a 
standardized EDI format, however on the highest interoperability level (knowledge-
based and skills based) presented in Table 4.  
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Figure 3. Interoperability and Integration Mediated by the ISO Interoperability and Integration Reference 

Architecture Model [56] 

 

Table 4. Interoperability Levels [56] 

Information Perspective Organization Perspective 

Interoperability 
Level 

Instances Interoperability Level 

Technical Technical plug&play, signal & 
protocol compatibility 

Light-weight interactions 

Structural Simple EDI, envelopes Data sharing 

Syntactic Messages and clinical documents 
with agreed vocabulary 

Information sharing 

Semantic Advanced messaging with common 
information models and 
terminologies 

Knowledge sharing at IT concept level 
in computer-parsable form 

� Coordination 

Organization/ 
Service 

Common business process Knowledge sharing at business concept 
level 

� Agreed service function level 
cooperation 

Knowledge 
based 

Multi-domain processes Knowledge sharing at domain level 

� Cross-domain cooperation 

Skills based Individual engagement in multiple 
domains 

Knowledge sharing in individual context 

� Moderated end-user collaboration 

 
All systems, work products or artifacts, developed independently under different 

perspectives and contexts (e.g. standards, components, FHIR resources, etc.), have to be 
formally represented according to ISO 23903 to interrelate them with each other for 
integration or interoperability. For that purpose, business systems must be modelled in a 
granularity or complexity appropriate for the considered use case. Thereby, each domain 
contributing to the business system in the context of the specific use case is represented 
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at four generic levels of specialization/generalization. The components and intra-domain 
relations are instantiated using the corresponding domain ontologies. For facilitating the 
semantic integration of domain ontologies by harmonizing the representations and 
enabling the necessary concept mapping, top-level ontologies such as ISO/IEC 21838 
Information Technology – Top-level Ontologies [63] are deployed. Top level ontologies 
provide at a very abstract level general concepts that are common to all domains, that 
way supporting the re-engineering of existing or the development of new ontologies. For 
properly representing semantics and pragmatics, appropriate grammars or logics have to 
be used. The outcome is the conceptualization of the real world business system and use 
case in question as the ISO 23903 Business View, which is thereafter transformed into 
the corresponding ISO 10746 RM-ODP views, deploying the representational tools 
(view ontologies) and thereby following the good modeling practices (Figure 4). 
According to the ISO 23903 framework, concepts can only be mapped and transformed 
at the same level of specialization/generalization. For getting there, the components have 
to be specialized or generalized before. The process of re-engineering existing systems 
for integration and/or interoperability is shown in Figure 5. 

ISO 23903 also enables the harmonization and integration of existing architecture 
models and frameworks as well as reference architectures (RAs) such as IoT RA, 
Industry 4.0 RA, etc. Ongoing projects frequently ignore the presented principles, 
challenges and limitations by trying just to aggregate “related” information or data 
models or to perform term-based mappings. 

 

 
Figure 4. ISO DIS 23903 Mandatory Model and Framework [56]. 
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Figure 5. Integration of standards and specifications using the Reference Architecture model [56]. 

 
Before becoming an international standard, the presented approach developed by the 

first author and his teams has been successfully deployed in several cross-domain ISO 
specifications, such as ISO 22600 Health Informatics - Privilege Management and 
Access Control [64], ISO 21298 Health Informatics - Functional and Structural Roles 
[65]. Its feasibility has been practically demonstrated for automatically harmonizing HL7 
v2.x and HL7 v3 specifications [66, 67] or for automatically designing inter-domain Web 
services to facilitate multi-disciplinary approaches to Type 2 Diabetes Care management 
[8, 9]. The approach also allows a comparative analysis and evaluation of ICT Enterprise 
Architectures [7]. 

9. Discussion 

The presented data model levels [49, 50] roughly comply with the phases of OMG’s 
Model Driven Architecture (MDA), defining the computation-independent modeling 
(CIM), platform-independent modeling (PIM) and platform-specific modeling (PSM). 
They are also comparable to the extended ISO/IEC 10746 Open Distributed Processing 
– Reference Model (RM-ODP) according to the ISO DIS 23903 Interoperability and 
Integration Reference Architecture model and framework introduced in the previous 
chapter. The Very High Level Data Model corresponds to the ISO DIS 23903 Business 
View, while the High Level Data Model corresponds to the RM-ODP Enterprise View, 
the Logical Data Model to the RM-ODP Information View and Computational View, 
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and the Physical Data Model complies with the RM-ODP Engineering View and 
Technology View. The latter views represent implementation and deployment. 

Table 5 compares the different Data Model Levels [46], Modeling Dimensions [48], 
related Modeling Actors and Model Scopes with ISO 23903 as well as other standards 
and specifications, demonstrating how ISO 23903 combines and advances all those 
approaches.  
 

Table 5. Comparing Data Model Levels, Dimensions of Modeling, Data Model at Different Information 
Level and the ISO Interoperability and Integration Reference Architecture Model, applied to specification 

examples [19] 

Data 
Model 
Level 
[46] 

Dimen-
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Modeling 
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Data 
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Modeling 
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RA 
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model 
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External Business 
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Relevant 
information and 
representation & 
relationships of 
basic concepts 

Enterprise 
View 

DCM, 
CSO 

IS
O

 1
07

46
 O

D
P

-R
M

 

Logical 
data 
model 

Infor-
mation 

Logical Data 
modelers 
and analysts 

Layout & types 
of data and 
object 
relationships 

Infor-
mation 
View 

HL7 V3 
(CMETs), 
HL7 
CIMI, 
openEHR 
Arche-
types, 
FHIM 

Compu-
tational 
View 

HL7 
FHIR Physical 

data 
model 

Data Physical Data 
modelers 
and 
developers 

Implementation-
related and 
platform-
specific aspects 

Engineer-
ing View 

 
According to the basics of cognition theories and principles of knowledge 

representation and management, including appropriate representation tools (languages 
and grammars), KR and KM facilitate the representation of (parts of) reality to serve 
specific objectives and interests intended by the development teams. Available KR tools 
allow representing anything. Any representations are possible. However, a platform-
specific model (view) wrongly representing the corresponding platform-independent 
model (view), or a platform-independent model (view) not complying with the enterprise 
view, etc., are useless and even dangerous. Therefore, the correctness, completeness and 
consistency of models (components, functions and relationships) as well as their 
integration and interoperability can only be justified at the systems levels they represent. 
The same holds also for the representation of a viewpoint by the more 
specialized/constrained view in the development process. 

The presented system-theoretical, architecture-centered, ontology-based 
representation of business systems does not replace the other views and their models and 
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specifications, but it facilitates their correct selection, constraining, completion and 
interrelation for systems integration and interoperability as demonstrated in Figure 5. 
That way, the correct deployment of existing work products such as HL7’s Application 
Programming Interfaces (APIs) or Fast Healthcare Interoperability Resources (FHIR) 
[64] is enabled. Practitioners emphasize the importance of the approach derived in this 
paper as well. HIMSS Chief Technology and Innovation Officer Steve Wretling stated 
for example: “Interoperability needs an architecture in addition to APIs” [69]. 

10. Conclusions 

All aspects or levels of knowledge representation and management from cognitive 
theories and modeling processes through notation up to processing, tooling and 
implementation undermine the need for a top down approach for any new system, new 
context or new use case at least in the first step. Only the business view allows the 
complete and consistent definition of concepts and constraints of components and 
relations. A solely data level focused development and implementation process cannot 
meet the challenges of highly dynamic and complex pHealth ecosystems. As models can 
be used to create new knowledge, aggregations in the sense of integration or 
interoperability can provide new insights at any viewpoint. However, the correctness of 
the outcome must be justified at reality. In other words, correct integration and 
interoperability cannot be guaranteed at data level or by just using terminologies, i.e. 
terms without the related concepts and relations. Standards defining platforms and 
frameworks must cover the entire continuum of knowledge representation and 
management presented in this paper. Just very few Standards Developing Organizations 
(SDOs) such as the Object Management Group (OMG) with its Model Driven 
Architecture (MDA) partially meet this challenge. Others like IEEE, ISO/TC215, 
CEN/TC251 or HL7 International have to extend their main focus from data models and 
implementable artifacts towards processes and related frameworks. With the recently 
approved ISO 23903, ISO/TC215 undertook an important step into that direction. 
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