

MQT-TZ: Secure MQTT Broker for
Biomedical Signal Processing on the Edge
Carlos SEGARRA a�b��, Ricard DELGADO-GONZALO a and Valerio SCHIAVONI b

 a CSEM, Neuchâtel, Switzerland

b Université de Neuchâtel, Neuchâtel, Switzerland

Abstract. Physical health records belong to healthcare providers, but the information
contained within belongs to each patient. In an increasing manner, more health-related
data is being acquired by wearables and other IoT devices following the ever-
increasing trend of the Quantified Self. Even though data protection regulations (e.g.,
GDPR) encourage the usage of privacy-preserving processing techniques, most of
the current IoT infrastructure was not originally conceived for such purposes. One of
the most used communication protocols, MQTT, is a lightweight publish-subscribe
protocol commonly used in the Edge and IoT applications. In MQTT, the broker must
process data on clear text, hence exposing a large attack surface for a malicious agent
to steal/tamper with this health-related data. In this pa per, we introduce MQT-TZ, a
secure MQTT broker leveraging Arm TRUSTZONE, a popular Trusted Execution
Environment (TEE). We define a mutual TLS-based handshake and a two-layer
encryption for end-to-end security using the TEE as a trusted proxy. We provide
quantitative evaluation of our open-source PoC on streaming ECGs in real time and
highlight the trade-offs.

Keywords. wearables, mHealth, secure broker, MQTT, mosquitto, TrustZone

1. Introduction

Personalized health and medicine has the potential of being the next revolution in health-
care. It is also referred as the P4 medicine (Predictive, Preventive, Personalized, and Par-
ticipatory), and provides the opportunity to benefit from more targeted and effective di-
agnoses and treatments [1]. One of the driving forces behind this tendency is the increas-
ing medicalization of wearable technology [2] and mobile health (mHealth) apps [3]. In
order to enable these technologies, complex processing IoT pipelines are gradually be- ing
deployed or repurposed. When the data-in-motion are vital signs, protecting user’s privacy
becomes a topic of crucial importance. Recent data protection regulations (e.g., GDPR [4])
stress the importance of protecting sensitive information against malicious attackers or
untrusted cloud providers.

Message Queuing Telemetry Transport (MQTT) [5] is one of the most commonly-
used communication protocols in IoT. In spite of that, it is not included in some of the most
extended Medical-Grade data exchange standards [6,7]. It follows a publish- subscribe
architecture specially designed for environments with limited memory and reduced
network bandwidth. In such circumstances, MQTT has proven to be more adapted to the
IoT than classical protocols such as HTTP [8]. In MQTT, a client publishes data to a topic

1 Corresponding Author: Carlos Segarra; E-mail: carlossegarragonzalez@gmail.com.

Digital Personalized Health and Medicine
L.B. Pape-Haugaard et al. (Eds.)

© 2020 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI200177

332

and the broker forwards it to each client that previously subscribed to it. The pro- tocol is
currently used in a variety of settings: data generation by sensors, pre-processing on the
edge, and forwarding to the cloud. Examples include live heart-rate data [9,10], smart-
grids [11], or building management systems [12]. Most MQTT implementations support
TLS for transport security in the client-broker link, preventing malicious actors from
spoofing application data. However, the broker itself still exposes a great attack surface
[13].

In order to protect the privacy of health-related data, we present MQT-TZ, a secure
implementation of the MQTT broker leveraging Arm TRUSTZONE, a Trusted Execution
Environments (TEE), widely available on edge devices [14]. TRUSTZONE is a security
feature available in recent Arm processors that enables system-wide hardware isolation
for trusted software [15]. Our prototype builds atop mosquitto (https://mosquitto.
org), a popular MQTT broker implementation, and includes persistent storage of client’s
keys in Arm’s tamper-proof secure storage, as well as TEE-protected re-encryption of
application data. These security enhancements make our ecosystem compliant with
the ”Services Secure Interface” [6] described by the Personal Connected Health Alliance,
and address several attack vectors listed [7] by the IHE. We also consider linking our secure
broker to a larger storage utility where data-at-rest is encrypted and its origin authenticated
by MQT-TZ.

The paper is organized as follows. In Section 2, we describe the technical architec-
ture and implementation of MQT-TZ. Then, in Section 3, we evaluate its performance and
robustness at processing 1-lead ECGs in real time. Finally, in Section 4 we expose our
main conclusions and propose further lines of research.

2. MQT-TZ: Securing the MQTT Broker

2.1 Architecture & Component Description

TRUSTZONE splits the system in a hardware-protected trusted part (the TEE) and an
untrusted one (also called Rich Execution Environment, or REE). We add an encryp- tion
layer in MQTT’s payload using client-specific keys stored in Arm’s secure storage. This
way, application data is only processed in clear inside the TEE. For the additional key-
provisioning, we redefine the client authentication in the mutual TLS handshake to prevent
the REE from gaining access to clients’ keys.

The overall workflow looks as follows. Data travels two-fold encrypted from the
client to the broker (Fig.1: part 1). Once the client access is confirmed, Fig. 1: part 2, the
subscribers for the given topic are retrieved and the payload forwarded (Fig 1: part 3). Then,
encrypted data is transferred to the TEE (Fig.1: part 4). The origin and destination client
keys are retrieved (fig. 1: part 5-7), the payload is re-encrypted, and sent back to the REE
(Fig. 1: part 8) and to the subscriber (Fig.1: part 9).

Two-Step Handshake. MQT-TZ defines and uses a two-step handshake that realizes
broker and client authentication with end-to-end encryption from the client to the TEE.
The handshake protocol requires minimal pre-provisioned cryptographic material. The
broker (server in TLS nomenclature) authentication is done through TLS’ handshake,
supported by default in mosquitto. The client authentication is done through MQTT. It
publishes its symmetric key, encrypted with the broker’s TEE public key, to a specific

C. Segarra et al. / MQT-TZ: Secure MQTT Broker for Biomedical Signal Processing on the Edge 333

write-only topic. This TEE key-pair is generated at device start-up time (secure boot) and
derived from a Hardware Unique Key (HUK).

Layered Encryption & Access

Control Mechanisms. Once the initial
handshake is finished, MQT-TZ uses a
two-layer encryption mechanism. First,
the client-broker link is protected by TLS
within MQTT. Second, MQTT’s
payload field is encrypted using the
clients’ symmetric key. Then, data is re-
encrypted in the TEE (explained next)
and sent to destination over MQTT-TLS.
Doing so, we achieve end-to-end
security relying on TRUSTZONE as a
secure proxy.

Payload Re-encryption. The core
secure functionality implemented in
MQT-TZ is the payload re-encryption.
We link MQTT with a Trusted
Application (TA) running inside the TEE that transfers the encrypted data to the Secure
World, retrieves the origin and destination keys from secure storage, and re-encrypts the
information. Currently, topic subscription lists and MQTT metadata are stored in a
dedicated database (MQTT DB) in the REE. We plan on shadowing these structures and
keeping them in the TEE.

Lightweight Cache. MQT-TZ embeds a lightweight cache that keeps the most re- cent
keys in the TA’s heap memory, and evicts the least used to persistent secure storage.

2.2 Implementation Details

MQT-TZ is implemented in C. The current version of MQT-TZ adds 400 SLOC to
mosquitto and the TA amounts to 1184 SLOC. The MQT-TZ TA relies on OP-TEE
(https://www.optee.org), an open-source framework with native support for TRUST-
ZONE. Our implementation will be publicly available (https://github.com/mqttz).

Client and Server Authentication. The server-side authentication is done through
vanilla TLS. We deploy MQT-TZ’s secure broker in a device with a static IP ad- dress.
Then, we bound the address to a domain name and use a certificate. We rely on Let’s
Encrypt (https://letsencrypt.org/) to get one and to authenticate the bro- ker. The client-
side authentication uses MQTT as communication layer, and openssl (v1.1.1a) for
cryptographic primitives and operations. The integration with mosquitto exploits custom
callbacks for each packet processing. In addition, we use MQTT Re- quest/Response (RR)
features (since v5) for the client’s key exchange. To control access and R/W permissions
to topics, we use mosquitto’s ACLs.

Trusted Application. We use OP-TEE to implement the payload re-encryption TA.
Code developed within this framework has two parts: (1), a host app that runs in the REE
and acts as entry point and bridge to the TEE, and (2) a trusted API in the TEE that ex- poses
different functions. MQT-TZ intercepts all MQTT packets being forwarded to the recipients,
and feeds our host app with both client’s IDs, and the encrypted data. We then perform the

C. Segarra et al. / MQT-TZ: Secure MQTT Broker for Biomedical Signal Processing on the Edge334

payload re-encryption using OP-TEE’s storage and cryptographic libraries. TRUSTZONE not
only provides isolation between worlds, but also between different TAs. Hence, we use the same
secure API to store new keys during the handshake. For the key retrieval, we plan to implement
a small LRU cache to store the most frequently used keys in the TA’s heap, and the rest in
persistent secure storage.

3. Evaluation & Discussion

In this section, we perform an evaluation of MQT-TZ. First, we benchmark the TA re-
encryption with random data in order to understand the overhead introduced by the re-
encryption; and then, we analyze the CPU and network throughput when monitoring vital
signs in a real setting. For all experiments, we virtualize a Raspberry Pi 3 using QEMU-
V8 (https://www.qemu.org/) running mosquitto v1.6.3 and OP-TEE v3.5.0.

3.1 TA Re-encryption

In Fig. 2, we show the breakdown of the time required to re-encrypt a single block of data
for different sizes. The time is split in the time to retrieve each key (retrieve dec key,
retriev enc key), encrypt, and decrypt. We can observe that AES is two orders of
magnitude slower in the TEE. This is a consequence of OP-TEE not using hardware ac-
celerators in contrast to openssl in the REE. Moreover, we observe sensible slowdowns
when switching from in-memory to secure persistent storage.

Figure 2. Re-encryption TA microbenchmark

3.2 Realtime ECG processing

In this case, we test the resilience of MQT-TZ at sustaining the workloads that can be
encountered in a hospital. For the experiments, we use the LTMS-S [16] platform de-
veloped by CSEM for the European Space Agency (ESA). In particular, we simulate 50
patients streaming in real-time 1-lead
electrocardiograms (ECGs) at a frequency of
321.25 Hz. All ECGs are streamed toward a
single MQT-TZ broker. In Fig. 3, we depict the
outbound throughput generated by each publisher
measured using nethogs
(https://github.com/raboof/nethogs). We observe
that at any given time only a subset of the
publishers actually emits data. A single subscriber
streams at 350 Bytes/s in the worst case, and the
full collective generates between 3 to 5 kBytes per
second. During the experiment, we recorded using Figure 3. Workload test: Network

throughput (top) and CPU usage (bottom)

C. Segarra et al. / MQT-TZ: Secure MQTT Broker for Biomedical Signal Processing on the Edge 335

dstat (https://github.com/dagwieers/dstat) the CPU load at the broker, shown in Fig. 3. We
observe that after the initial peak, the overall CPU usage (both for usr and sys processes)
stabilizes at 60%.

4. Conclusion and Future Work

Motivated by the lack of secure-by-design communication protocols for the Edge, we
presented MQT-secure implementation of the MQTT broker using TRUST-ZONE and
showed its direct application in a in-hospital setting. The proposed system is robust and
capable of managing 50 patients in real-time with a CPU usage of 60%. We plan to extend
this work along the following directions. First, we will compare MQT-TZ against other
publish-subscribe protocols and messaging queues. Second, we will study the performance
overhead of MQT-TZ when deployed on large-scale scenarios. Finally, we intend to look
into the energy footprint, an aspect of paramount relevance for edge deployments.

References

[1]� G. P. Cumming, “Connecting & collaborating - Healthcare for the 21st century,” in PAHI’2014, 2014.
[2]� J. Dunn, R. Runge, and M. Snyder, “Wearables and the medical revolution,” Pers. Med., vol. 15, no. 5, pp.

429–448, 2018.
[3]� M.-P. Gagnon, P. Ngangue, J. Payne-Gagnon, and M. Desmartis, “m-Health adoption by healthcare

professionals: A systematic review,” J. Am. Med. Inform. Assn., vol. 23, pp. 212–220, June 2015.
[4]� The European Parliment and the Council of the European Union, “Regulation (EU) 2016/679,” 2016.
[5]� A. Banks and R. Gupta, “MQTT version 3.1.1,” software, OASIS, Oct. 2014.
[6]� Personal Connected Health Alliance, “Fundamentals of medical-grade data exchange,” white paper,

Continua, Sept. 2018.
[7]� IHE PCD Technical Committee, “Medical equipment management (MEM): Medical device cyber secu- rity,”

white paper, IHE International, Inc., Oct. 2015.
[8]� T. Yokotani and Y. Sasaki, “Comparison with HTTP and MQTT on required network resources for IoT,” in

ICCEREC’2016, pp. 1–6, Sept. 2016.
[9]� K. Chooruang and P. Mangkalakeeree, “Wireless heart rate monitoring system using MQTT,” Procedia

Comput. Sci., vol. 86, pp. 160–163, 2016.
[10]� C. Segarra, R. Delgado-Gonzalo, M. Lemay, P.-L. Aublin, P. Pietzuch, and V. Schiavoni, “Using trusted

execution environments for secure stream processing of medical data,” in Lect. Notes Comput. Sc., vol.
11534, pp. 91–107, 2019.

[11]� A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city internet of things platform with microser-
vice architecture,” in FiCloud’2015, pp. 25–30, Aug. 2015.

[12]� Y. Lee, H. Hsiao, C. Huang, and S. T. Chou, “An integrated cloud-based smart home management system
with community hierarchy,” IEEE. T Consum. Electr., vol. 62, pp. 1–9, Feb. 2016.

[13]� Teserakt AG, “Is MQTT secure? (a report),” 2019.
[14]� R. Liu and M. Srivastava, “VirtSense: Virtualize sensing through ARM TrustZone on Internet-of- Things,”

in SysTEX’2018, (New York, NY, USA), pp. 2–7, ACM, 2018.
[15]� J. Amacher and V. Schiavoni, “On the performance of ARM TrustZone,” in DAIS’2019, pp. 133–151, 2019.
[16]� O. Chételat, D. Ferrario, M. Proença, J.-A. Porchet, A. Falhi, O. Grossenbacher, R. Delgado-Gonzalo,
[17]� N. Della Ricca, and C. Sartori, “Clinical validation of LTMS-S: A wearable system for vital signs mon-

itoring,” in EMBC’2015, pp. 3125–3128, 2015.

C. Segarra et al. / MQT-TZ: Secure MQTT Broker for Biomedical Signal Processing on the Edge336

