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Abstract. Physical health records belong to healthcare providers, but the information 
contained within belongs to each patient. In an increasing manner, more health-related 
data is being acquired by wearables and other IoT devices following the ever-
increasing trend of the Quantified Self.  Even though data protection regulations (e.g., 
GDPR) encourage the  usage of privacy-preserving processing techniques,  most of 
the current IoT infrastructure was not originally conceived for such purposes. One of 
the most used communication protocols, MQTT, is a lightweight publish-subscribe 
protocol commonly used in the Edge and IoT applications. In MQTT, the broker must 
process data on clear text, hence exposing a large attack surface for a malicious agent 
to steal/tamper with this health-related data. In this pa per, we introduce  MQT-TZ, a 
secure MQTT broker leveraging Arm  TRUSTZONE, a popular Trusted Execution 
Environment (TEE). We define a mutual TLS-based handshake and a two-layer 
encryption for end-to-end security using the TEE as     a trusted proxy. We provide 
quantitative evaluation of our open-source PoC on streaming ECGs in real time and 
highlight the trade-offs. 
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1. Introduction 

Personalized health and medicine has the potential of being the next revolution in health- 
care. It is also referred as the P4 medicine (Predictive, Preventive, Personalized, and Par- 
ticipatory), and provides the opportunity to benefit from more targeted and effective di- 
agnoses and treatments [1]. One of the driving forces behind this tendency is the increas- 
ing medicalization of wearable technology [2] and mobile health (mHealth) apps [3]. In 
order to enable these technologies, complex processing IoT pipelines are gradually be- ing 
deployed or repurposed. When the data-in-motion are vital signs, protecting user’s privacy 
becomes a topic of crucial importance. Recent data protection regulations (e.g., GDPR [4]) 
stress the importance of protecting sensitive information against malicious attackers or 
untrusted cloud providers. 

Message Queuing Telemetry Transport (MQTT) [5] is one of the most commonly- 
used communication protocols in IoT. In spite of that, it is not included in some of the most 
extended Medical-Grade data exchange standards [6,7]. It follows a publish- subscribe 
architecture specially designed for environments with limited memory and reduced 
network bandwidth. In such circumstances, MQTT has proven to be more adapted to the 
IoT than classical protocols such as HTTP [8]. In MQTT, a client publishes data to a topic 
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and the broker forwards it to each client that previously subscribed to it. The pro- tocol is 
currently used in a variety of settings: data generation by sensors, pre-processing on the 
edge, and forwarding to the cloud. Examples include live heart-rate data [9,10], smart-
grids [11], or building management systems [12]. Most MQTT implementations support 
TLS for transport security in the client-broker link, preventing malicious actors from 
spoofing application data. However, the broker itself still exposes a great attack surface 
[13]. 

In order to protect the privacy of health-related data, we present MQT-TZ, a secure 
implementation of the MQTT broker leveraging Arm TRUSTZONE, a Trusted Execution 
Environments (TEE), widely available on edge devices [14]. TRUSTZONE is a security 
feature available in recent Arm processors that enables system-wide hardware isolation 
for trusted software [15]. Our prototype builds atop mosquitto (https://mosquitto. 
org), a popular MQTT broker implementation, and includes persistent storage of client’s 
keys in Arm’s tamper-proof secure storage, as well as TEE-protected re-encryption of 
application data. These security enhancements make our ecosystem compliant with 
the ”Services Secure Interface” [6] described by the Personal Connected Health Alliance, 
and address several attack vectors listed [7] by the IHE. We also consider linking our secure 
broker to a larger storage utility where data-at-rest is encrypted and its origin authenticated 
by MQT-TZ. 

The paper is organized as follows. In Section 2, we describe the technical architec- 
ture and implementation of MQT-TZ. Then, in Section 3, we evaluate its performance and 
robustness at processing 1-lead ECGs in real time. Finally, in Section 4 we expose our 
main conclusions and propose further lines of research. 

2. MQT-TZ: Securing the MQTT Broker 

2.1 Architecture & Component Description 

TRUSTZONE splits the system in a hardware-protected trusted part (the TEE) and an 
untrusted one (also called Rich Execution Environment, or REE). We add an encryp- tion 
layer in MQTT’s payload using client-specific keys stored in Arm’s secure storage. This 
way, application data is only processed in clear inside the TEE. For the additional key-
provisioning, we redefine the client authentication in the mutual TLS handshake to prevent 
the REE from gaining access to clients’ keys. 

The overall workflow looks as follows. Data travels two-fold encrypted from the 
client to the broker (Fig.1: part 1). Once the client access is confirmed, Fig. 1: part 2, the 
subscribers for the given topic are retrieved and the payload forwarded (Fig 1: part 3). Then, 
encrypted data is transferred to the TEE (Fig.1: part 4). The origin and destination client 
keys are retrieved (fig. 1: part 5-7), the payload is re-encrypted, and sent back to the REE 
(Fig. 1: part 8) and to the subscriber (Fig.1: part 9). 

Two-Step Handshake. MQT-TZ defines and uses a two-step handshake that realizes 
broker and client authentication with end-to-end encryption from the client to the TEE. 
The handshake protocol requires minimal pre-provisioned cryptographic material. The 
broker (server in TLS nomenclature) authentication is done through TLS’ handshake, 
supported by default in mosquitto. The client authentication is done through MQTT. It 
publishes its symmetric key, encrypted with the broker’s TEE public  key,  to  a  specific 
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write-only topic. This TEE key-pair is generated at device start-up  time  (secure boot) and 
derived from a Hardware Unique Key (HUK). 

 
Layered    Encryption   & Access  

Control  Mechanisms. Once the initial 
handshake is finished, MQT-TZ uses a 
two-layer encryption mechanism. First, 
the client-broker link is protected by TLS 
within MQTT. Second, MQTT’s 
payload field is encrypted using the 
clients’ symmetric key. Then, data is re-
encrypted in the TEE (explained next) 
and sent to destination over MQTT-TLS. 
Doing so, we achieve end-to-end 
security relying on TRUSTZONE as a 
secure proxy.   

Payload Re-encryption. The core 
secure functionality implemented in 
MQT-TZ is the payload re-encryption. 
We link MQTT with a Trusted 
Application (TA) running inside the TEE that transfers the encrypted data to the Secure 
World, retrieves the origin and destination keys from secure storage, and re-encrypts the 
information. Currently, topic subscription lists and MQTT metadata are stored in a 
dedicated database (MQTT DB) in the REE. We plan on shadowing these structures and 
keeping them in the TEE. 

Lightweight Cache. MQT-TZ embeds a lightweight cache that keeps the most re- cent 
keys in the TA’s heap memory, and evicts the least used to persistent secure storage.  

2.2 Implementation Details 

MQT-TZ is implemented in C. The current version of MQT-TZ adds 400 SLOC to 
mosquitto and the TA amounts to 1184 SLOC. The MQT-TZ TA relies on OP-TEE 
(https://www.optee.org), an open-source framework with native support for TRUST- 
ZONE. Our implementation will be publicly available (https://github.com/mqttz). 

Client and Server Authentication. The server-side authentication is done through 
vanilla TLS. We deploy MQT-TZ’s secure broker in a device with  a  static IP ad- dress. 
Then, we bound the address to a domain name and use a certificate. We rely on Let’s 
Encrypt (https://letsencrypt.org/) to get one and to authenticate the bro- ker. The client-
side authentication uses MQTT as communication layer, and openssl (v1.1.1a) for 
cryptographic primitives and operations. The integration with mosquitto exploits custom 
callbacks for each packet processing. In addition, we use MQTT Re- quest/Response (RR) 
features (since v5) for the client’s key exchange. To control access and R/W permissions 
to topics, we use mosquitto’s ACLs. 

Trusted Application. We use OP-TEE to implement the payload re-encryption TA. 
Code developed within this framework has two parts: (1), a host app that runs in the REE 
and acts as entry point and bridge to the TEE, and (2) a trusted API in the TEE that ex- poses 
different functions. MQT-TZ intercepts all MQTT packets being forwarded to the recipients, 
and feeds our host app with both client’s IDs, and the encrypted data. We then perform the 
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payload re-encryption using OP-TEE’s storage and cryptographic libraries. TRUSTZONE not 
only provides isolation between worlds, but also between different TAs. Hence, we use the same 
secure API to store new keys during the handshake. For the key retrieval, we plan to implement 
a small LRU cache to store the most frequently used keys in the TA’s heap, and the rest in 
persistent secure storage. 

3. Evaluation & Discussion 

In this section, we perform an evaluation of MQT-TZ. First, we benchmark the TA re- 
encryption with random data in order to understand the overhead introduced by the re- 
encryption; and then, we analyze the CPU and network throughput when monitoring vital 
signs in a real setting. For all experiments, we virtualize a Raspberry Pi 3 using QEMU- 
V8 (https://www.qemu.org/) running mosquitto v1.6.3 and OP-TEE v3.5.0. 

3.1 TA Re-encryption 

In Fig. 2, we show the breakdown of the time required to re-encrypt a single block of data 
for different sizes. The time is split in the time to retrieve each key (retrieve dec key, 
retriev enc key), encrypt, and decrypt. We can observe that AES is two orders of 
magnitude slower in the TEE. This is a consequence of OP-TEE not using hardware ac- 
celerators in contrast to openssl in the REE. Moreover, we observe sensible slowdowns 
when switching from in-memory to secure persistent storage. 

 
Figure 2. Re-encryption TA microbenchmark 

3.2 Realtime ECG processing 

In this case, we test the resilience of MQT-TZ at sustaining the workloads that can be 
encountered in a hospital. For the experiments, we use the LTMS-S [16] platform de- 
veloped by CSEM for the European Space Agency (ESA). In particular, we simulate 50 
patients streaming in real-time 1-lead 
electrocardiograms (ECGs) at a frequency of  
321.25 Hz. All ECGs are streamed toward a 
single MQT-TZ broker. In Fig. 3, we depict the 
outbound throughput generated by each publisher 
measured using nethogs 
(https://github.com/raboof/nethogs). We observe 
that at any given time only a subset of the 
publishers actually emits data. A single subscriber 
streams at 350 Bytes/s in the worst case, and the 
full collective generates between 3 to 5 kBytes per 
second. During the experiment, we recorded using Figure 3. Workload test: Network 

throughput (top) and CPU usage (bottom) 
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dstat (https://github.com/dagwieers/dstat) the CPU load at the broker, shown in Fig. 3. We 
observe that after the initial peak, the overall CPU usage (both for usr and sys processes) 
stabilizes at 60%. 

4. Conclusion and Future Work 

Motivated by the lack of secure-by-design communication protocols for the Edge, we 
presented MQT-secure implementation of the MQTT broker using TRUST-ZONE and 
showed its direct application in a in-hospital setting. The proposed system is robust and 
capable of managing 50 patients in real-time with a CPU usage of 60%. We plan to extend 
this work along the following directions. First, we will compare MQT-TZ against other 
publish-subscribe protocols and messaging queues. Second, we will study the performance 
overhead of MQT-TZ when deployed on large-scale scenarios. Finally, we intend to look 
into the energy footprint, an aspect of paramount relevance for edge deployments. 

References 

[1]� G. P. Cumming, “Connecting & collaborating - Healthcare for the 21st century,” in PAHI’2014, 2014. 
[2]� J. Dunn, R. Runge, and M. Snyder, “Wearables and the medical revolution,” Pers. Med., vol. 15, no. 5, pp. 

429–448, 2018. 
[3]� M.-P. Gagnon, P. Ngangue, J. Payne-Gagnon, and M. Desmartis, “m-Health adoption by healthcare 

professionals: A systematic review,” J. Am. Med. Inform. Assn., vol. 23, pp. 212–220, June 2015. 
[4]� The European Parliment and the Council of the European Union, “Regulation (EU) 2016/679,” 2016. 
[5]� A. Banks and R. Gupta, “MQTT version 3.1.1,” software, OASIS, Oct. 2014. 
[6]� Personal Connected Health Alliance, “Fundamentals of medical-grade data exchange,” white paper, 

Continua, Sept. 2018. 
[7]� IHE PCD Technical Committee, “Medical equipment management (MEM): Medical device cyber secu- rity,” 

white paper, IHE International, Inc., Oct. 2015. 
[8]� T. Yokotani and Y. Sasaki, “Comparison with HTTP and MQTT on required network resources for IoT,” in 

ICCEREC’2016, pp. 1–6, Sept. 2016. 
[9]� K. Chooruang and P. Mangkalakeeree, “Wireless heart rate monitoring system using MQTT,” Procedia 

Comput. Sci., vol. 86, pp. 160–163, 2016. 
[10]� C. Segarra, R. Delgado-Gonzalo, M. Lemay, P.-L. Aublin, P. Pietzuch, and V. Schiavoni, “Using trusted 

execution environments for secure stream processing of medical data,” in Lect. Notes Comput. Sc.,  vol. 
11534, pp. 91–107, 2019. 

[11]� A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city internet of things platform with microser- 
vice architecture,” in FiCloud’2015, pp. 25–30, Aug. 2015. 

[12]� Y. Lee, H. Hsiao, C. Huang, and S. T. Chou, “An integrated cloud-based smart home management system 
with community hierarchy,” IEEE. T Consum. Electr., vol. 62, pp. 1–9, Feb. 2016. 

[13]� Teserakt AG, “Is MQTT secure? (a report),” 2019. 
[14]� R. Liu and M. Srivastava, “VirtSense: Virtualize sensing through ARM TrustZone on Internet-of- Things,” 

in SysTEX’2018, (New York, NY, USA), pp. 2–7, ACM, 2018. 
[15]� J. Amacher and V. Schiavoni, “On the performance of ARM TrustZone,” in DAIS’2019, pp. 133–151, 2019. 
[16]� O. Chételat, D. Ferrario, M. Proença, J.-A. Porchet, A. Falhi, O. Grossenbacher, R. Delgado-Gonzalo, 
[17]� N. Della Ricca, and C. Sartori, “Clinical validation of LTMS-S: A wearable system for vital signs mon- 

itoring,” in EMBC’2015, pp. 3125–3128, 2015. 

C. Segarra et al. / MQT-TZ: Secure MQTT Broker for Biomedical Signal Processing on the Edge336


