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Abstract. Introduction: We describe an analysis that modulates the simple 
population prevalence derived likelihood of a particular condition occurring in an 
individual by matching the individual with other individuals with similar clinical 
histories and determining the prevalence of the condition within the matched 
group. Methods: We have taken clinical event codes and dates from anonymised 
longitudinal primary care records for 25,979 patients with 749,053 recorded 
clinical events. Using a nearest neighbour approach, for each patient,  the 
likelihood of a condition occurring was adjusted from the population prevalence to 
the prevalence of the condition within those patients with the closest matching 
clinical history. Results: For conditions investigated, the nearest method 
performed  well  in  comparison  with  standard   logistic   regression.  
Conclusions: Results indicate that it may be possible to use histories to identify 
‘similar’ patients and thus to modulate future likelihoods of a condition occurring. 
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1. Introduction 
 
The advent of electronic information systems in recent decades has enabled a rapid 
increase in data creation and collection in many disciplines, not least in healthcare, 
where we now have large amounts of data stored in individuals’ electronic health 
records. These data have been acquired during the care of individuals with a variety of 
aims: to improve the care of the individuals; to improve communications between 
individuals’ care givers; to maintain records of care; and to enable appropriate charging 
to payers [1]. Electronic records generally now hold data dating back 30 years or more 
and exist in various healthcare enterprises and departments for a variety of purposes – 
e.g. booking systems, GP systems, lab test results, imaging – and contain a number of 
data items, such as demographic information, test results, diagnoses, treatments, clinic 
appointments and charging information. In the work presented here, a set of 
longitudinal primary care records was analyzed to see if patients with similar recorded 
histories of symptoms and diagnoses were likely to share similar future diagnoses. The 
analysis of Electronic Health Records (EHR) data for risk prediction is an active area of 
research [2] however scant work using solely primary care records data for general 
future conditions likelihood was found. Miotto et al [3] used secondary care EHR data 
to make such predictions for a number of conditions using deep learning, achieving an 

                                                   
1 Corresponding author: Jonathan Turner, Centre for Health Informatics, City, University of London, 
Northampton Square, London EC1V 0HB, United Kingdom; E-mail: jonathan.turner@city.ac.uk. 

Digital Personalized Health and Medicine
L.B. Pape-Haugaard et al. (Eds.)
© 2020 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI200176

327



F-score of 0.236 for their predictions. Weng et al [4] tested four machine learning 
algorithms (random forest, logistic regression, gradient boosting machines, neural 
networks) to predict cardiovascular risk. McCormick et al [5] describe a Bayesian 
hierarchical model for the selection of association rules, predicting future medical 
histories for individuals on the basis of common clinical histories. Wang et al [6] 
developed a multilinear sparse logistic regression for risk prediction with patient EHRs 
for joint risk prediction (two or more diseases that are related to each other in terms of 
sharing common comorbidities, symptoms, risk factors). In summary, other work to 
date has primarily been on secondary care records for patients being treated in hospital 
settings as part of single episodes; the work we describe here investigates the use of 
primary care records that record events over many years. 

2. Objective 

With many symptoms being common to multiple diseases, there is a challenge in 
producing an initial diagnosis or recommendation for diagnostic tests from a set of 
symptoms that could have been produced by a number of diseases. Often the initial 
choice of diagnosis or testing is based on a clinician's impression of the likelihood of 
that condition in a general population; however the opportunity may exist for 
modification of these likelihoods based on individuals' recorded histories. In this work 
we aim to investigate the potential of applying machine learning methods to medical 
histories, in order to see if we can predict whether an individual’s chances of being 
diagnosed with a particular condition are modulated from general population 
prevalence by comparison of their previous diagnosis and symptom histories with 
others’ diagnosis and symptom histories. Jenssen and Kenyon note that ‘medical 
decision-making is about assessing risk and weighing competing probabilities in the 
setting of imperfect information’ [7]. We used coded histories from primary care 
records as the basis for this work. Primary care records, in general, utilize coding 
systems to store diagnosis and other information about patients. Common coding 
systems used for these records include ICD9, the dominant system in primary care in 
the USA and now being replaced by ICD10; and the Read Code system, the dominant 
system in the UK but now being replaced by SNOMED CT. Data used in this study 
were derived from UK patients, coded using Version 3 of the Read Codes (CTV3), and 
US patients, coded using ICD9. We chose CTV3 as the primary coding system. Some 
data required translation from ICD9 to CTV3 using a look-up table created from 
existing look-up tables for ICD9 to SNOMED 
CT from NIH [8] and for SNOMED CT to 
Read CTV3 from NHS Technology Reference 
Data Update Distribution Service [9]. 
Each CTV3 term is associated with a single 
concept and consists of a 5 byte code with an 
optional 2 byte. Codes comprise letters, 
numbers and trailing decimal points and fall 
into one of three categories: findings and 
diagnoses; processes; and medications. All 
codes are arranged in a hierarchy with a table 
listing all parent-child relations. 

Figure 1 shows a small extract from the 
Figure 1. An example of codes in the 
CTV3 hierarchy. 
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CTV3 hierarchy, illustrating the relationship between codes relating to bacterial chest 
infections. This Figure shows that Acute haemophilus influenza bronchitis is a 
Haemophilus influenzae infection; there are four other codes that are child codes of 
Haemophilus influenzae infection. Haemophilis influenzae infection itself is a 
Haemophilus infection, which in turn is a Bacterial disease. Bacterial disease is an 
Infective disorder, a child code of Clinical findings, a category coming under the root 
node of the CTV3 tree. 

3. Methods 

The data sources were sets of longitudinal clinical records derived from general 
practice data across the UK and USA, de-identified prior to being made available to us 
for this work. Data were presented as a set of records of events, including patient age, 
gender, and codes of events including diagnoses, symptoms, administrative events and 
prescriptions, together with the year of the event and history of smoking and alcohol 
consumption. There were 25,979 patients in the full data set (49.3%M, 50.7%F), with a 
total of 749,053 recorded items, of which 375,312 items were diagnostic events. Age 
distribution and prevalence of common conditions (as determined by [10]) in the full 
data set was not different to that present in the general population. For this work, only 
diagnosis and symptom codes and those codes giving information about smoking and 
alcohol consumption were retained from the records in the data set. The Konstanz 
Information Miner (KNIME) [11] was used to prepare the data and merge the data sets; 
statistical analysis was performed using R [12]. All software was run on an Asus 
N56VM laptop with Intel Core i7-3610QM 2.30 GHz CPU with 8GB RAM running 
64-bit Windows 10. 

For each record, the codes retained were used to determine its k nearest neighbour 
(KNN) records by use of the binomial method [13] using a program written in R for 
this work. Optimum values for k, the number of nearest neighbours, were established 
for each condition by experimentation on a training set of records removed from the 
complete data set, where the F-measure of accuracy was optimized over a range of 
values for k. The most effective depth in the CTV3 tree at which to aggregate codes 
from deeper levels was similarly determined by experiment. Calculations were repeated 
for a set of medical conditions. The process was run separately for each condition, with 
the condition of interest hidden from the information used for the distance calculation. 
For each record, the prevalence of the condition in the KNN was compared to the 
prevalence in the remainder of the data set; those records where the prevalence in the 
neighbours was significantly (p < 0.05) higher than in the remaining records, were 
assigned a prediction of positive for the condition of interest, otherwise the prediction 
was negative. Predictions were then compared to the actual presence in each record. 

4. Results 

An example is given for a single condition, allergic rhinitis. A Fagan nomogram [14] of 
the changed probability of an individual having the condition is illustrated in Figure 2. 
The prior probability of an individual having the condition, i.e. the population 
prevalence, is 0.178. After implementing the nearest neighbours algorithm, (the ‘test’) 
those predicted to have the condition had a probability of having the condition of 0.252. 
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Figure 2. Results for allergic rhinitis using k-
nearest neighbours. 

The sensitivity of the test was 0.599; the 
specificity was 0.614. Results for six 
conditions are shown in Table 1. The 
results include comparison with a simple 
logistic regression (LR) method, chosen as 
an established prediction method [2]. 

KNN generally performed better than 
LR when judged by F-score, sensitivity and 
specificity, for all conditions. Low 
prevalence conditions performed poorly 
with LR, predicting no positive cases. 
Because of LR’s better performance in 
positive likelihood ratio, it also gave higher 
results for odds ratio than KNN, suggesting 
that if LR predicts positive for a condition 
then there is greater confidence in the 
record containing that condition than if 
KNN predicts positive. However, if LR predicts negative for a record then there is less 
confidence that the record does truly not contain the condition than if the KNN 
predicted negative. F1 scores achieved for the more common conditions compared well 
with those achieved by Miotto et al [3]. Additionally, the KNN method presents an 
explainable method that may be more convincing than other machine learning methods 
in a clinical setting [4]. 
Table 1. Comparison of KNN and LR prediction methods for six conditions. 

5. Conclusions and Future Work 

The results of our analysis indicate that it is possible to apply nearest neighbour 
techniques using medical histories to modulate future likelihoods of a condition 
occurring in individual patients. The technique employed in this work showed 
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Allergic Rhinitis 2297 KNN 0.354 0.469 0.599 0.614 1.550 0.654 2.37 
LR 0.113 0.080 0.067 0.974 2.518 0.959 2.626 

Bronchitis 2004 KNN 0.328 0.433 0.552 0.661 1.625 0.679 2.394 
LR 0.139 0.981 0.223 0.164 7.240 0.881 5.146 

Obesity 2000 KNN 0.334 0.443 0.566 0.670 1.713 0.648 2.643 
LR 0.409 0.326 0.287 0.979 13.422 0.729 18.420 

Gastroparesis 26 KNN 0.017 0.039 0.286 0.944 5.06 0.757 6.684 
LR 0 0 0 0.999 0 0 0 

Autism 25 KNN 0.016 0.034 0.167 0.970 5.493 0.854 6.392 
LR 0 0 0 1 0 0 0 

Eczema 670 KNN 0.229 0.369 0.623 0.791 2.984 0.476 6.265 
LR 0.137 0.095 0.079 0.996 21.649 0.925 23.413 
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performance improvements over logistic regression methods particularly for conditions 
of low prevalence, although there were limitations due to the relatively small data set 
size. This method is suggested as a useful low-cost screening tool. Early discovery of a 
condition can often improve the chances of successful treatment or of mitigation of the 
effects of the condition and many conditions can be detected through screening tests on 
asymptomatic individuals. Disadvantages of conventional screening tests include risks 
of harm to the individual if the screening test is invasive; inconvenience and/or stress to 
the individual; and financial cost to the individual and/or the health care system. It is 
therefore advantageous to perform screening tests on subsets of the population selected 
to be at great risk of the condition being screened for [15]. 

We intend to extend our analysis in a number in a number of areas. We will repeat 
the analysis using the existing methods but translating event codes to SNOMED CT 
and comparing results to those described here. We intend to optimize the methods used 
to address the slow run time experienced in this analysis. Run time has implications for 
use in clinical practice: currently the system takes around 30 minutes to run on a 
sample of 5,000 records. This is likely to be too long for opportunistic likelihood 
predictions for an individual arriving in a clinic, although acceptable for use in 
identification of individuals appropriate for screening or invitation to consultation. 
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