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Abstract. Machine Learning (ML) can improve the diagnosis, treatment decisions,
and understanding of cancer. However, the low explainability of how “black box”
ML methods produce their output hinders their clinical adoption. In this paper, we
used data from the Netherlands Cancer Registry to generate a ML-based model to
predict 10-year overall survival of breast cancer patients. Then, we used Local In-
terpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlana-
tions (SHAP) to interpret the model’s predictions. We found that, overall, LIME
and SHAP tend to be consistent when explaining the contribution of different fea-
tures. Nevertheless, the feature ranges where they have a mismatch can also be of
interest, since they can help us identifying “turning points” where features go from
favoring survived to favoring deceased (or vice versa). Explainability techniques
can pave the way for better acceptance of ML techniques. However, their evaluation
and translation to real-life scenarios need to be researched further.
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1. Introduction

Although it has been shown that Machine Learning (ML) methods are able to predict
oncological outcomes [1], there are still a few factors that hinder their widespread clinical
adoption. One of these factors is the lack of trust in the models. Often, ML tools are
considered black boxes. If decisions need to be made that are based (at least partially) on
predictions made by ML algorithms, users need to be able to understand how and why
the algorithm has come up with that decision [2].

In the last couple of years, ML explainability has gained considerable interest. Re-
cently, two techniques have been proposed and developed to make ML models more
interpretable: Local Interpretable Model-Agnostic Explanations (LIME) [3] and SHap-
ley Additive exPlanations (SHAP) [4]. However, evaluation of these tools remains rel-
atively unexplored. Although some studies have attempted to evaluate explanations of
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model predictions by letting users test which explanations are more understandable or
intuitive [5], more analytical, standardized evaluations are needed.

In this paper, we used data from the Netherlands Cancer Registry (NCR) to generate
a predictive model of 10-year overall survival (OS) after curative breast cancer surgery.
Then, we applied LIME and SHAP to the obtained model to explain its predictions.
Finally, we evaluated said interpretability methods by analysing their explanations and
the agreement between them, which allowed us to identify features’ turning ponts.

2. Materials & Methods

We used NCR data granted under data request K18.999. It consisted of demographic,
clinical, and pathological data of patients in the Netherlands diagnosed between 2005
and 2008 with non-metastatic breast cancer who underwent surgery. Features included
age, tumor characteristics, hormonal receptor statuses, clinical and pathological TNM-
staging, and number of removed and positive lymph nodes. We imputed missing values
using Deep Learning and K-Nearest Neighbor (KNN). We defined 10-year OS as the tar-
get variable for our model. The final dataset consisted of 46,284 patients and 31 features.

We performed feature selection using a combination of 21 different filter and wrap-
per methods. Each of them output a ranking ordering feature predictiveness. Then, we
computed the median of these rankings and chose the six best ranked features: 1. age,
2. ratio between the number of positive and removed lymph nodes (ratly), 3. number
of removed lymph nodes (rly), 4. tumor size in millimeters (ptmm), 5. pathological
TNM stage (pts), and 6. tumor grade (grd).

We experimented with a variety of ML tools: Random Forest, Extreme Gradient
Boosting (XGB), KNN, Artificial Neural Networks, Naı̈ve Bayes, and Logistic Regres-
sion. We performed a randomized grid search to train, test, and optimize each of them.
Since our target variable had a class distribution of roughly 75% (survived) versus 25%
(deceased), we used stratified 10-fold cross-validation to optimize the models’ hyperpa-
rameters. Then, we evaluated their performance using the Area under the Curve (AUC)
as a metric, with XGB yielding the highest value (0.78). Therefore, we used XGB for the
rest of this study.

In order to better understand the model’s predictions, we used LIME and SHAP. On
the one hand, LIME approximates individual predictions of a (black box) model with
a local (interpretable) surrogate model that is as close as possible to the original one.
Explanations are produced by minimizing a loss function between the predictions of both
of them. The complexity of the surrogate model is used to explain the original model [3].
On the other hand, besides offering local interpretability, SHAP allows to explain a model
globally by expressing it as linear functions of features [4]. In other words, it explains
how much the presence of a feature contributes to the model’s overall predictions.

To assess the consistency of LIME in explaining individual predictions, we applied
it to each of the predictions of the test set (20% of the data) 100 times. We defined con-
sistency when LIME assigned values with the same sign in all cases. Then, we evaluated
global variable importance using SHAP. Finally, we tested agreement between LIME
and SHAP values by comparing their instances (i.e., local) explanations in the test set.
We defined agreement when both methods assigned either a positive or a negative con-
tribution to the same feature of the same data instance.
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3. Results

Figure 1 shows five representative data instances (i.e., patients) picked at random of the
LIME consistency test. The x-axis shows the values for a particular feature, while the y-
axis denotes the feature weight assigned to that value by LIME. A positive weight means
it contributed to survived, while a negative one contributed to deceased. Across all plots,
the position of each box is the same for each patient. For instance, the first box of each
plot corresponds to the same patient, who was 51 years old, had a ratly value of 0, a
rly value of 1, etc. LIME was consistent in >98% of the cases of age, pts, and grd.
However, for ratly, rly, and ptmm LIME was consistent in 74%, 8%, and 55% of the
cases, respectively. These cases correspond to the boxes in Figure 1 that cross 0 (dotted
line), which means that LIME yielded contradictory weights.

Figure 2 shows the SHAP values of the six features used by the global model. The
x-axis shows the SHAP values that correspond to the features shown on the y-axis. The
color scale indicates the feature values, which range from low (blue) to high (red). Simi-
larly to LIME, a positive SHAP value contributes to survived, while a negative one con-
tributes to deceased.

Figure 1. LIME consistency of five representative data instances (i.e., patients) picked at random. Contradic-
tory explanations correspond to boxes that cross the dotted line at 0. Practically, age, pts, and grd had consistent
LIME values, while the opposite can be said for ratly, rly, and ptmm.

The percentage of instances where LIME and SHAP agreed on their explanations
for each feature was as follows: age, 97.5%; ratly, 95.9%; rly, 87.8%; ptmm, 91.9%;
pts, 99.6%; grd, 99.9%. Figure 3 shows the individual feature weights for age (since it
was the best-ranked feature) and for rly (since it was the feature with the largest dis-
agreement). The x-axis denotes the feature values, while the y-axis denotes the feature
weights assigned by the interpretability methods. Circles indicate an agreement between
them, while crosses indicate the opposite.
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Figure 2. Summary plot of all SHAP values. Globally, age has the biggest impact on the model output.

Figure 3. Feature weights assigned by LIME and SHAP to all test set instances for age and rly. The shaded
area shows clear age’s clear “turning point”. SHAP markers were shifted slightly along the x-axis for clarity.

4. Discussion

Figure 1 shows that LIME tends to assign consistent values to categorical features. For
example, a pts of 1 is assigned almost identical feature weights in different patients. A
similar thing occurs for a grad of 2. However, LIME has more difficulties with numer-
ical features. For instance, there is very little difference in the impact that having 1 or
16 lymph nodes removed has on the model predictions. We think this is because LIME
discretizes continuous features by binning them and treating them as categorical, losing
information. Figure 1 also shows that LIME weights can be contradictory. For example,
in the rly case, LIME values for the same patient are often inconsistent. It has been sug-
gested that LIME’s uncertainty can be explained by randomness in the sampling proce-
dure and the variation of interpretation quality across different data instances [6], which
is in line with the presented results.
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Figure 2 combines the features’ effects (x-axis) with their importance (y-axis). At a
global level, age is the most important feature, while rly is the least important. This could
be explained by its non-monotonic behaviour (i.e., low rly values are assigned positive
and negative weights).

Although LIME and SHAP values show a similar trend overall for both age and rly
(Figure 3), we can also distinguish specific regions of mismatch. These are of particu-lar
interest, since they can help us identify “turning points” in the features’ values. For
example, in the case of age, mismatches occur approximately between 65 and 68 years
(shaded area). This could explain where the model considers age to contribute towards
survived or towards deceased.

5. Conclusion

In this study, we used breast cancer data from the NCR to generate an XGB-based model
for predicting 10-year OS. We explained the model’s predictions using LIME and SHAP
and compared their performance. In few cases, LIME showed inconsistent and contradic-
tory explanations of individual predictions. Furthermore, comparing LIME and SHAP
showed agreement between them in 95.4% of the instances. The regions of mismatch
allowed us to identify “turning points” in the features’ values, which indicate where fea-
tures go from favoring survived to favoring deceased (or vice versa).

Methods like LIME and SHAP are a first step to provide a more interpretable way of
explaining complex models than what the models are capable of themselves. It is
important to keep in mind that perfect explanations are also infeasible, since there is no
gold standard to which the explanations can be compared. This also makes the
evaluation of these methods a challenge. These type of methods pave the way for larger
use and acceptance of ML techniques for digital health applications. However, their
evaluation and translation to different fields need to be researched further.
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