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Abstract. Biomedical research has become data-driven. To create the required big
datasets, health data needs to be shared or reused out of the context of its initial pur-
pose. This leads to significant privacy challenges. Data anonymization is an impor-
tant protection method where data is transformed such that privacy guarantees can
be provided according to formal models. For applications in practice, anonymiza-
tion methods need to be integrated into scalable and robust tools. In this work, we
focus on the problem of scalability.

Protecting biomedical data from inference attacks is challenging, in particular for
numeric data. An important privacy model in this context is t-closeness, which has
also been defined for attribute values which are totally ordered. However, directly
implementing a scalable algorithmic representation of the mathematical definition
of the model proves difficult. In this paper we therefore present a series of opti-
mizations that can be used to achieve efficiency in production use. An experimen-
tal evaluation shows that our approach reduces execution times of anonymization
processes involving t-closeness by up to a factor of two.
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1. Introduction

Biomedical research, e.g. in the field of precision medicine which tailors healthcare to
characteristics of individuals, is increasingly data-driven and leveraging methods from
data science such as machine learning [1]. However, when creating the required big
datasets, stringent privacy protection is mandated by laws and regulations. Hence, a wide
range of safeguards has to be applied, including organizational and technical measures.

Data anonymization is an important building block for implementing technical pri-
vacy protection. The basic idea is to transform data in such a manner that formal guar-
antees, e.g. regarding the risk of singling out, linkage or inference, can be provided [2].
These formal guarantees are captured by so called privacy models. t-Closeness is a state-
of-the-art model for protecting data from inference attacks. The model requires that the
distribution of sensitive attribute values in a set of indistinguishable data records is not
too different from the distribution of sensitive information in the overall dataset [3].
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2. Objective

The ARX Data Anonymization Tool is among the few software solutions for quantita-
tive data anonymization, that have found wide-spread adoption. ARX focuses on data
transformation methods which have been specifically recommended for applications to
health data and it implements models for protecting data from singling out, linkage and
inference [4]. t-Closeness is amongst the models supported.

t-Closeness has been specified in different variants that apply to variables with dif-
ferent scales of measure. One of these variants focuses on variables which are totally
ordered. This model is particularly relevant in practice, as it is one of the few privacy
models which have been proposed for protecting sensitive numeric variables.

When using ARX to protect complex datasets using the t-closeness model, however,
we realized that the initial implementation is not scalable. Upon further inspection, we
realized that directly implementing a scalable algorithmic representation of the mathe-
matical definition of the model t-closeness proves difficult in general. In this paper we
therefore present a series of optimizations that we have developed to achieve efficiency
in productive use. All of them have been integrated into ARX.

3. Methods

3.1. Problem Definition

t-Closeness is a condition that applies to equivalence classes, i.e. groups of records which
are indistinguishable regarding attributes that could be used for linking records. Let
P(e) = (p1, p2, ..., pm) be the relative frequency distribution of sensitive values in a given
equivalence class e and let Q = (q1,q2, ...,qm) be the relative frequency distribution of
sensitive values in the whole dataset. D[P(e),Q] is the distance between the distributions
P(e) and Q [3]. It is defined as follows [3]:
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A dataset fulfills t-closeness with numerical ground distance if for all equivalence
classes e, D[P(e),Q]≤ t holds.

Age Sex LoS AdmQrtr Charge 

[25, 50[ Male [1, 5[ 3 50.000 

[25, 50[ Male [1, 5[ 3 60.000 

[50, 75[ Female [5, 10[ 1 60.000 

[50, 75[ Female [5, 10[ 1 60.000 

[50, 75[ Female [5, 10[ 1 70.000 
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Figure 1. Example discharge dataset. ”LoS” = Length of stay, ”AdmQrtr” = Admission quarter.

Figure 1 shows an example dataset with a sensitive attribute ”Charge” and two equiv-
alence classes e1 and e2 defined by the values of the other attributes. The distribution
of sensitive values is Q = ( 1

5 ,
3
5 ,

1
5 ) since the values 50.000, 60.000 and 70.000 appear

1, 3 and 1 times in the whole dataset, respectively. For the equivalence classes, we get
P(e1) = ( 1

2 ,
1
2 ,0) and P(e2) = (0, 2

3 ,
1
3 ). Consequently, we have
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Hence, we can conclude that the dataset satisfies t-closeness with t = max{ 1
4 ,

1
6}= 0.25.

A straight-forward implementation of t-closeness for fully ordered attributes would
implement this by checking if the following inequality holds:

|r1|+ |r1 + r2|+ |r1 + r2 + r3|+ ...|r1 + ...+ rm−1| ≤ t(m−1)

Each ri has the form ri = pi− qi, where pi is the frequency of the attribute value
number i in the currently considered equivalence class e of the transformed data set, and
qi the frequency of the attribute value number i in the entire input dataset.

As we will show in Section 4 this process is highly inefficient. The main reason is
that it needs to iterate over all sensitive attribute values contained in the overall dataset.
Given that this process needs to be executed for all equivalence classes, the worst-case
complexity is O(n2) where n is the number of records in the dataset.

3.2. Optimization Approaches

In this section, we present three optimizations that we used to improve our initial,
straight-forward implementation of the model.

Optimization 1 – Fibonacci hashing: The first optimization adresses the imple-
mentation level. One of the most time-consuming aspects of implementing a check for t-
closeness is to dynamically group the sensitive attribute values in each class to determine
their frequency. The standard data structure used for this purpose are hash tables. ARX
already used an efficient implementation provided by the High Performance Primitive
Collections for Java library [5]. However, these collections are still much more complex
than required, as they for example support updating the data stored in a map. We there-
fore implemented a simplified hash table using Fibonacci hashing based on the golden
ratio to reduce the number of CPU cycles required for adding and querying elements.

Optimization 2 – Check pruning: The second optimization addresses the mathe-
matical definition of the model. Let us assume that the attribute values number 1...k in
the equivalence class currently under consideration do not occur at all, then p1 = p2 =
...= pk = 0 holds and the first k summands in the above condition have the form:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qk|.

This partial sum depends only on the input dataset and can therefore be pre-
calculated for every possible value of k before the individual equivalence classes of the
transformed dataset are checked.

These precalculations can be performed in an initialization step, for ascending values
of k until the corresponding subtotal is greater than the threshold, i.e. the following holds:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qk|> t(m−1).

Let us denote the smallest value of k for which this inequality is fulfilled with x.
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When checking whether t-closeness holds for a specific equivalence class, as a first
step, we calculate the smallest index of any attribute value occurring in the class. We call
this index y. When y > x it can be inferred that the following summands are included in
the relevant sum:

|−q1|+ |−q1−q2|+ ...+ |−q1− ...−qx|.

It follows that the threshold t(m− 1) will definitely be exceeded and computations
can already be stopped at this point (concluding that privacy guarantees are not fulfilled).

Optimization 3 – Summand pruning: The third optimization adds an additional
pruning mechanism using pre-computations.

It can be used in cases where the pruning strategy described above is not applicable,
i.e. if y≤ x holds. It works by starting the summation at position y, using an appropriate
sum which has been pre-calcuated ahead of time for all k ≤ x as a starting point:

| − q1|+ | − q1− q2|+ ...+ | − q1− ...− qk|.

3.3. Experimental Design

To evaluate our approach, we used the following data from registries and health surveys
from the U.S.: 100,937 records about traffic accidents from the NHTSA Fatality Anal-
ysis Reporting System (FARS), 539,253 records from the American Time Use Survey
(ATUS) and 1,193,504 records from the Integrated Health Interview Series (IHIS). More-
over, we analyzed a subset of a synthetic discharge dataset which is particularly hard to
protect from sensitive attribute disclosure (SPD) [6]. We also included two de-facto stan-
dard datasets for benchmarking anonymization methods: 30,162 records from the 1994
U.S. Census (ADULT) and 63,441 records from the 1998 KDD competition (CUP). For
a detailed specification of the datasets we refer to [7].

We anonymized the datasets with attribute generalization and record suppression to
produce output datasets which fulfill t-closeness for fully ordered attributes. We varied
the risk threshold t (0.5 ≥ t ≥ 0.1) to study the effect of our optimizations on different
parameterizations. As a baseline, we used our original, unoptimized implementation. In
the software, both pruning strategies are combined into a common implementation and
we therefore present one measurement capturing both of them.

4. Results

Figure 2 shows the results of our experiments. As can be seen, our optimizations im-
proved execution times by up two a factor of more than two. Each optimization had a
positive effect in all setups while the degree of effectiveness of each optimization varied
between setups. Pruning was possible in between 69% and 99% of the checks performed,
but the effect on execution times varied.

The differences in the impact of optimizations on execution times can be explained
by considering the distribution of sensitive attributes values in the different datasets. The
impact was lower for datasets with a small number of distinct values, i.e. ADULT (7),
ATUS (7) and IHIS (10), higher for datasets with more distinct sensitive values, i.e. CUP
(81) and FARS (20). We measured the strongest effect for the SPD dataset, which has
101 different sensitive attribute values. When the number of sensitive attribute values is
high, execution times are also higher, implying the our optimizations are more effective
exactly in the cases where they are needed the most.
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Figure 2. Execution times relative to the original implementation for various datasets and risk thresholds.

5. Conclusion

Due to its usability, flexibility and scalability, ARX is actively used in many areas, in-
cluding commercial big data analytics platforms, medical research projects, clinical trial
data sharing and for training purposes. An important reason for ARX’s scalability are
the many optimizations that have been integrated into the software. In prior work we
have, for example, presented methods to improve the scalability of optimization algo-
rithms for trading off risks vs. utility [8] and a versatile optimized runtime environment
for anonymization algorithms [9].

In this paper, we have presented an optimization affecting a specific and impor-
tant privacy model only. Our approach addresses the implementation level as well
as the mathematical definition of the model implemented. Our solution utilizes high-
performance data structures as well as pre-computation techniques. The model is partic-
ularly relevant in practice, as it is one of the few approaches which can be used to protect
sensitive numeric data.
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