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Abstract. Modern biomedical research is increasingly data-driven. To create the
required big datasets, health data needs to be shared or reused, which often leads to
privacy challenges. Data anonymization is an important protection method where
data is transformed such that privacy guarantees can be provided according to for-
mal models. For applications in practice, anonymization methods need to be in-
tegrated into scalable and reliable tools. In this work, we tackle the problem of
achieving reliability. Privacy models often involve mathematical definitions us-
ing real numbers which are typically approximated using floating-point numbers
when implemented as software. We study the effect on the privacy guarantees pro-
vided and present a reliable computing framework based on fractional and interval
arithmetic for improving the reliability of implementations. Extensive evaluations
demonstrate that reliable data anonymization is practical and that it can be achieved
with minor impacts on executions times and data utility.
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Modern data-driven biomedical research, e.g. in the field of precision medicine which
tailors healthcare to the characteristics of individuals, increasingly leverages data sci-
ence methods such as machine learning [1]. However, when creating the required big
datasets, laws and regulations mandate stringent privacy protection. Hence, a wide range
of safeguards has to be applied, ranging from organizational to technical measures.

Data anonymization is an important technical building block for implementing pri-
vacy protection. In this process, data is transformed in such a manner that formal guar-
antees, e.g. regarding the risk of singling out, linkage or inference, can be provided. Tra-
ditional models of privacy protection such as k-anonymity, �-diversity and t-closeness
specify syntactic constraints on output datasets, while more recent models like differen-
tial privacy formulate requirements for data processing methods [2].

2. Objective

All methods for implementing privacy models require performing changes to data which
inevitably leads to a decrease of its utility. To balance a decrease in privacy risks with a
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decrease of utility, models for quantifying both aspects have been developed. When im-
plementing privacy models in practice, an important challenge lies in the need to reflect
their mathematical definitions in software. Privacy models are often formulated over real
numbers, which in software are approximated by floating-point numbers with limited
precision (typically 64 bits). Computations can therefore yield results that differ signifi-
cantly from the exact mathematical results [3]. This can make output data of anonymiza-
tion tools vulnerable to privacy breaches. For example, it has been shown that straight-
foward implementations of a common method for achieving differential privacy can be
exploited to extract the entire content of a (presumably protected) dataset [4]. However,
studies of the effects of floating-point errors on the privacy guarantees provided by other
methods for data anonymization are still lacking in the literature.

In this article, we aim to fill this gap, with a focus on investigating further meth-ods
which are truthful (i.e. non-perturbative) and hence particularly well-suited for the
biomedical domain [5]. For this, we discuss the numerical stability of implementations
of various privacy models, including k-anonymity, �-diversity, t-closeness and further
methods for achieving differential privacy [2]. Moreover, we present a reliable comput-
ing framework, which we have integrated into the open source data anonymization tool
ARX [6] to mitigate vulnerabilities resulting from the use of floating-point operations.

3. Methods

3.1. Data Anonymization and Floating-Point Arithmetic

Figure 1 shows an example transformation of an input dataset using a combination of
generalization (i.e. the replacement of values with more general, but semantically con-
sistent values), suppression (i.e. the removal of values) and aggregation (i.e. the replace-
ment of values with an aggregate, such as their mean). The example output dataset satis-
fies 2-anonymity, which means that each combination of attribute values appears at least
twice (see [2] for further details). Whether or not k-anonymity is satisfied is easy to de-
termine by simply counting the size of groups of indistinguishable records. Implement-
ing other privacy models, such as �-diversity, t-closeness or differential privacy, requires
evaluating mathematical expressions over real numbers, though (cf. Section 3.2).
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Figure 1. Example of input data and transformed output data.

In computers, real numbers are typically approximated using floating-point num-
bers. The number of floating-point values which can be represented with a fixed number
of bits (typically 64) is finite. Hence, there exists an infinite number of unrepresentable
real numbers. Most implementations of floating-point arithmetic adopt the IEEE stan-
dard 754 [7]. It specifies that all floating-point operations have to be performed as if it
was possible to perform the corresponding operation with infinite precision, and then to
round the result to a representable number. This inevitably introduces rounding errors
which add up during sequences of calculations [3].
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3.2. Numerical Stability of Common Privacy Models

Implementing some privacy models supported by ARX, e.g. k-anonymity [2], doesn’t
require decimal numbers at all. Implementing others requires significant amounts of dec-
imal arithmetic, though. Examples are (1) t-closeness which basically requires that the
distribution of sensitive attribute values in a set of indistinguishable data records is not
too different from the corresponding distribution in the overall dataset or (2) (entropy) �-
diversity which requires the distribution (p1, ..., pm) of sensitive attribute values in each
group of indistinguishable records to satisfy −∑i 1 pi ln(pi) ≥ ln(�) [2]. However, by
studying possible effects of floating-point error propagation using forward analyses (see
e.g. [3] for details), we were able to derive upper bounds for the resulting additive ex-
ceedances of the privacy parameters of these models. While a detailed presentation of
these analyses is beyond the scope of this article, they showed that the resulting privacy
violations are negligible in practice for all syntactic privacy models supported by ARX.

Differential privacy is not a property of a dataset, but a property of a data pro-
cessing method. It basically guarantees that the probability of any possible output of a
probabilistic algorithm does not change “by much” if data of one individual is added to
or removed from the input dataset. The Laplacian mechanism and the exponential
mechanism are important building blocks for implementating differentially private al-
gorithms [8]. In [9], we have presented a process for implementing k-anonymity while
fulfilling (ε,δ )-differential privacy. This approach uses random sampling to introduce
non-determinism and the exponential mechanism to optimize the utility of output data.
Consequently, unlike the majority of differentially private algorithms, it is truthful and
therefore well-suited for processing health data [5].

We were able to calculate an upper bound on the rounding error induced by straight-
forward floating-point implementations of the exponential mechanism. For this, we
applied conservative methodologies described e.g. in [3] followed by an extension of the
original proof of the privacy guarantees provided [8] which takes rounding errors into
account. While a detailed presentation of this analysis is, again, out of the scope of this
article, it showed that the additive exceedance of the expected privacy loss ε is
negligible, with values of about 10−10 or less in practical settings.

However, the implementation of differential privacy in ARX requires complex cal-
culations to determine the sampling fraction β and the parameter k for k-anonymity to
guarantee the requested degree of privacy protection. Investigating our floating-point im-
plementation, we found that the deviations of ε were in the order of 10−16 using common
values of ε (e.g. 0.01, 0.1, 0.5, ln(2), 0.75, 1, ln(3), 1.25, 1.5 and 2). The actual values
calculated for the parameter δ , however, deviated drastically, as is shown in Table 1.

Table 1. Relative error of δ for ε = ln(2) using a floating-point implementation.

Requested value of δ 10−2 10−3 10−4 10−5 10−8 10−9

Error of δ [%] 13.3 11.1 17.2 28.4 10.0 27.9

3.3. Design of ARX’s Reliable Computing Framework

To solve this problem, we implemented a framework comprising different computing
technologies that are reliable, i.e. offer strict guarantees for the accuracy of the calculated
results: (1) Arithmetic using exact arbitrary-precision floating-point numbers. This can
be used for calculations involving numbers with a finite amount of digits only. (2) Using
representations as fractions with arbitrarily long integer enumerators and denominators.
This approach can be used to perform exact calculations over rational numbers but it can
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become very slow. (3) Interval arithmetic [3], which dynamically computes strict bounds
on the errors of mathematical operations. The basic idea is not to operate on (approxi-
mations of) real numbers, but rather on intervals which enclose the respective exact real
numbers. Functions operating on such intervals yield intervals which are guaranteed to
include the exact result. For example, addition can be performed by calculating

[x1,x2]+ [y1,y2] = [x1 + y1,x2 + y2].

ARX is implemented in Java and arbitrary prevision arithmetic and fraction arith-
metic is well supported by common programming libraries. The number of Java libraries
for performing interval arithmetic is, however, known to be limited [10]. Hence, we im-
plemented a basic interval arithmetic framework from scratch while focusing on a mini-
mal amount of easily understandable and verifiable code. We implemented various oper-
ators, including the basic arithmetic operators. For more complex functions such as exp,
pow, log and sqrt we invoke the respective implementations for floating-point values
pro-vided by the Java standard library which have clearly defined accuracies. We also
imple-mented various comparison operators such as ≤ which allow for reliable
comparisons by returning the result of comparing the upper and lower endpoint of their
operands. These operators are guarded by checks which raise an error if the relation of
their operands is not decidable, i.e. if the intervals are overlapping.

We used the methods and operators provided by this framework to implement the
parameter calculation process for differential privacy reliably so that the actual degree of
privacy protection provided can be at most more conservative than specified by the uer.

����������

To evaluate the impact of the reliable parameter calculation on the strictness of the de-
rived parameters we have compared it with a straight-forward floating-point implemen-
tation using common values of ε ranging from 0.01 to 2 and δ = 10−i for i = 1, ...,9.

The differences between the values of β obtained using both implementations were
very small with values of about 10−16 in all cases. All values obtained for k were identi-
cal except for ten configurations using irrational parameters. This is because these num-
bers have more significant figures than the other values considered, which resulted in
higher rounding errors and hence larger intervals during calculations. In these cases, the
values of k obtained reliably were (slightly) higher. Using ε = ln(3), the values of k com-
puted differed for δ = 10−5 and δ = 10−6 (k = 63 vs. k = 66 and k = 78 vs. k = 82,
respectively). The results obtained when using ε = ln(2) are listed in Table 2. As can be
seen, the absolute differences were at most two. Consequently, for decreasing values of
δ , which correspond to increasing degrees of privacy protection, the relative differences
between the values of k obtained by both implementations tended to become smaller.

Table 2. Values of k derived from various values of δ and ε = ln(2).
δ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Floating-Point 7 18 30 42 54 67 81 93 105
Reliable 8 20 32 44 56 68 81 95 107

In contrast to results obtained using the floating-point implementation (cf. Table 1),
the actual values of ε and δ resulting from reliably calculated parameters k and β were at
most more conservative than the privacy parameters specified by the user. In particular,
increasing k was necessary to mitigate the violations of δ reported in Table 1. At the same
time, the impacts on the intensity of data transformations applied and hence the potential
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We also evaluated the execution times of both implementations on a PC with a

quad-core 3.1 GHz CPU, Ubuntu Linux and an Oracle JVM. The results are shown in
Figure 2. When decreasing both ε and δ (which corresponds to stronger degrees of
protection), the relative execution times tended to increase. Using typical values of ε ≈ 1
and δ ≈ 10−6, the execution time of the reliable implementation was about four times
higher than the time used by the floating-point implementation. In all experiments with ε
≥ 0.1, the calculation of parameters terminated in less than one second using both
implementations. This contains the range of parameters which is practical for the
approach (cf. [9]).
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Figure 2. Execution times for deriving β and k from various values of δ and ε reliably relative to the float-
ing-point implementation.

5. Conclusion

In this article, we studied how privacy violations resulting from floating-point implemen-
tations of anonymization algorithms can be mitigated. We discussed reliability issues re-
sulting from arithmetic operations for a variety of privacy models including k-anonymity,
�-diversity and t-closeness as well as an implementation of differential privacy specif-
ically suited for applications to health data [9]. Moreover, we presented a framework
comprising reliable computing techniques, including interval and fractional arithmetic.
All results have been integrated into the open source tool ARX. Finally, we examined the
impacts of the reliable implementation on output data utility as well as execution times
and found both to be negligible in practice when realistic parameters are being used.
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