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Abstract. Clinical decision support system (CDSS) plays an essential role nowa-
days and CDSS for treatment provides clinicians with the clinical evidence of can-
didate prescriptions to assist them in making patient-specific decisions. Therefore, 
it is essential to find a partition of patients such that patients with similar clinical 
conditions are grouped together and the preferred prescriptions for different groups 
are diverged. A comprehensive clinical guideline often provides information of pa-
tient partition. However, for most diseases, the guideline is not so detailed that on-
ly limited circumstances are covered. This makes it challenging to group patients 
properly. Here we proposed an approach that combines clinical guidelines with 
medical data to construct a nested decision tree for patient partitioning and treat-
ment recommendation. Compared with pure data-driven decision tree, the recom-
mendations generated by our model have better guideline adherence and interpret-
ability. The approach was successfully applied in a real-world case study of pa-
tients with hyperthyroidism. 

Keywords. Decision support systems, management, guideline adherence, machine 
learning 

Introduction 

Clinical decision support system (CDSS) is one of the major components of personal-
ized health service [1]. Rapid development of CDSS has been driven by explosive in-

crease of electronic health records in recent years. CDSS can provide smart recommen-

dations to both clinicians and patients at almost every stage in a clinical process [2]. In 

this study, we focus on CDSS for medication recommendation, with the purpose of 

helping clinicians in primary care to improve the quality and safety of the treatment. 

This is urgently demanded in China as the national clinical resources are significantly 
biased to the advanced hospitals in cities, while the majority of the population resides 

in the rural area only covered by primary care [3].  

Usually, CDSS for recommendation is accomplished by partitioning patients so 

that the patients with similar circumstances are likely to be treated in the same way. In 

general, there are two types of algorithms for medication recommendation: knowledge-

driven and data-driven. The knowledge-driven approach is to develop an expert system 
based on domain knowledge (e.g., clinical guidelines) [4–6], while the data-driven one 

is to apply the data mining techniques on medical records to build the mapping be-

tween patient’s information and medications [7–9].  
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The knowledge-driven approach maintains a set of rules derived from the clinical 

guideline. By applying the rules, patients satisfied the rule conditions are recommended 

with corresponding medications, which ensures that the recommendations are always 
consistent with the guidelines. Following such an approach, Mei et al. developed an 

OCL-compliant GELLO engine and successfully applied this model in management of 

chronic diseases [4]. However, the prerequisite of developing adequate knowledge 

driven CDSS is a comprehensive clinical guideline, which is absent for many types of 

diseases where the guidelines only cover patient populations with limited clinical con-

ditions. In addition, the knowledge provided in clinical guideline could be too general 
to provide fine-granular personalized recommendations. 

With the large amounts of electronic clinical records (EMRs), data-driven CDSS 

can be developed to provide personalized medication recommendations. Recently, Liu 

et al. proposed an algorithm to group the patients based on the similarity metric learnt 

from the real clinical data [10]. Likewise, Chen and Altman reported a Bayesian condi-

tional probability model for recommendation of clinical orders through the data mining 
of EMRs [8][9]. The authors demonstrated that automatic recommendations generated 

by data-driven CDSS could be consistent with clinical guidelines to a large extent. 

However, although data-driven approach is easy to scale to a large number of diseases 

and often provides personalized result, the correctness of the result highly depends on 

the quality and the distribution of the dataset. The recommendations from data-driven 
CDSS may be not guideline-concordant, which degrades the clinicians’ trust to use the 

system. 

In this study, we propose a method to integrate the knowledge-driven and data-

driven approach for medication recommendation. Our target is to find a partition of 

patients such that the patients with the similar clinical conditions are grouped together 

and there exist the preferred prescription(s) for each group. Such a partition setting can 
be represented in a form of decision tree, in which the internal nodes on a path define 

the patient group and the label of the leaf node provides the medication. Specifically, 

we first build a decision tree based on the clinical rules with rule-obeyed data, then 

rule-uncovered data are loaded to further split the tree. Intuitively, a nested decision 

tree is constructed in a process of supplementing and refining the clinical guideline. All 

clinical rules as well as important hidden information in the EMR data are shown in the 
nested tree, which makes the recommendation provided by the nested tree not only 

patient-specific, but also consistent with the knowledge. 

We implemented such an approach and applied it in a real-world case study of pa-

tients with hyperthyroidism. A nested decision tree was built based on clinical guide-

line and we compared it with the baseline decision tree using CART algorithm [11], 

which is the pure data-driven approach. We found that, with little compromise in pre-
diction accuracy for rule-uncovered data, the nested decision tree had better guideline 

adherence and increased the interpretability of the model. With demonstrated effective-

ness, we believe that medication recommendation for other diseases could generally 

benefit from the proposed approach, especially when the clinical guidelines of diseases 

only address the limited clinical conditions of the patients. 

Methods 

For a type of disease d, we are given the clinical guideline of d, and a EMR dataset for 

patients diagnosed with disease d, in which each sample consists of the clinical condi-
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tions of a patient and the prescription made by the clinician. Clinical rules for treatment 

of d are extracted from guidelines. And medical data is splited into two parts according 

to whether the clinical condition are mentioned by the rules, namely rule-coverd and 

rule-uncovered samples. Rule-obeyed samples are further selected from rule-covered 
samples by the agreement of prescriptions with guideline rules. As illustrated in Fig. 1, 

using rule-obeyed samples whose prescriptions are consistent with rules, the basic part 

of our tree (called rule-based tree) is built under the guide of extracted rules. By load-

ing the rule-uncovered samples, the rule-based tree gets further expansion (called data-

based tree expansion). The basic tree part and its data-based tree expansion part form a 
nested tree. 

The method section mainly focused on methodology of key steps in the construc-

tion of the nested decision tree: guideline rule extraction, construction of rule-based 

decision tree and decision tree expansion.  

Guideline Rule Extraction 

To integrate the guideline knowledge into the construction of decision tree, the first 
step is to extract structured rules from clinical guidelines. An extracted rule contains 

information of related feature conditions and corresponding medication recommenda-

tion.  

For example, information like “patients of hyperthyroidism coexistent cardiovas-

cular disease should take β blocking agents [12][13]” in guideline would be converted 

to a rule like: if prediag_cvd is true, then the prescription should contain β blocking 
agents. In this rule, “prediag_cvd” is the feature name to represent the status whether 

patients suffering from cardiovascular disease, and the rule is satisfied when the value 

of prediag_cvd equals to 1. With the rule satisfied, our candidate recommendations will 

be β blocking agents, or the drug combinations that occur frequently in the data and 

contain β blocking agents.  

 

Figure 1. Construction of the nested decision tree by combining knowledge-driven and data-driven 

approaches. 
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Construction of Rule-Based Decision Tree 

In general, decision tree was constructed by selection of features that had largest infor-

mation entropy gain or least Gini impurity/Gini index [11]. Gini index for a binary fea-
ture A is calculated as: 

Gini���� =
|����|

|�|
���������� +

|����|

|�|
���������� (1) 

where D represents the total data of parent node. The symbol |�| gives the sample 

number of the node. The subscript (0 and 1) denotes possible values for a binary fea-

ture. Gini index for feature equals to � can be calculated as: 

���������� = 1 − ∑ 
�	

 

      
�
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where � belongs to {0,1} for binary data. And n is the number of possible classes with 


�	  denoting the fraction of class j in the set of ����.  

In our approach, we also used Gini index and all features were converted into a bi-

nary dataset. The novelty is that we applied the rules to guide the tree construction. 

Specifically, we added weight factors to rule-related features, making them favored to 
be selected as splitting features during tree construction. We defined weighted Gini 

gain to select splitting features, and the one with largest weighted Gini gain was select-

ed to group the data. The weighted Gini gain for feature A was calculated as follows: 

If feature A is not mentioned in all rules, 

∆�����
�����

= ∆�����      (3) 

If feature A is mentioned in any rule, 

∆�����
�����

= �∆������1 + ���ℎ���       (4) 

where 

∆����� = ������� − ��������      (5) 

and �������� as well as ������� can be calculated according to Formula (1) and (2), 

respectively. In Formula (4), � is a coefficient of constant larger than 1 to ensure the 

preference for features extracted from the rules. ���ℎ��  is the weight of feature  

extracted from the rules to ensure the preference for features with high percentage of 

satisfied samples, and its value depends on the corresponding conditions mentioned in 

the rules. The way to determine the value of ���ℎ��  is listed in Table 1, where  

PercentfeatureA=i is defined as the percentage of the samples that satisfy the condition 
featureA=i. 

Table 1. Determination of ����ℎ��. 

Value Condition

PercentfeatureA=0 Feature A is 0 in all the rules

PercentfeatureA=1 Feature A is 1 in all the rules

Max(PercentfeatureA=0,
PercentfeatureA=1) 

Feature A=1 in some rules, and FeatureA =0 in 
other one(s)
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To summarize, ∆����� accounts for the baseline feature importance in splitting da-

ta. � makes the features extracted from the rules have higher priority than the features 

not mentioned in any rule. ���ℎ��  differentiates importance among rule extracted 

features.  

Decision Tree Expansion 

To further expand the decision tree, clinical data not covered by the rules is loaded into 

the rule-based tree. By going through the rule-based tree, samples are grouped into sev-
eral leaf nodes and those leaf nodes can be further split as long as the stop criteria is not 

satisfied. Tree expansion in this phase follows exactly the general CART algorithm. 

Therefore, after the expansion, a nested tree is constructed to provide additional infor-

mation, including 1) new branches for the patients whose conditions are not covered by 

the guideline and/or 2) finer partition for the existing patient groups. 

Another consideration in our approach is to avoid overfitting of the decision tree. 
Therefore, two parameters are used to constrain the tree. They are maximum depth of 

the tree (max_depth) and the minimum number of samples at a leaf node 

(min_samples_leaf). Decision tree constructed under such constraints has limited layers 

and is easy to be interpreted.  

Results 

To illustrate our approach, a real-world case study of patients with hyperthyroidism is 

introduced here. Like most diseases, the guideline of hyperthyroidism does not provide 

a hierarchical way to group patients, i.e., only addresses the patient groups with some 

clinical conditions. 

Data Set 

We used medical data from 90 clinical institutes in China with time spanning from 
2012 to 2016. In total, there were 83360 records with the main diagnosis as hyperthy-

roidism, corresponding to 17166 unique patients. Females accounted for 80% of the 

whole data. The distribution of age centered around 20 to 40 years old. Those popula-

tion characteristics described from data agree well with the fact that young women are 

more susceptible to hyperthyroidism.  

We further investigated the history of disease and medication. It was found that 99% 
of patients had disease history, and about 65% and 5% of patients had merely hyperthy-

roidism and Graves disease history, respectively. In terms of medication history, 78% 

of patients had taken drugs for hyperthyroidism medication, among which 91% of pa-

tients followed previous prescriptions.  

Each sample in the medical data we used recorded one visit of hyperthyroidism pa-
tient, which consisted of basic information of the patient, diagnosis made by the clini-

cian, items of image tests and laboratory tests the patient carried out, and the medica-

tion prescription. All features were converted to binary data for further analysis. 
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Rule Extraction Result from Guidelines  

According to the management guidelines of hyperthyroidism and the related reference 
[12][13], we summarized 23 rules for medication recommendations. For simplicity of 

presentation, we only selected top 4 rules (see Table 2) ranked by covered sample 

number in our data to illustrate our approach. Each rule is represented in the if-then 

fashion, including the feature and its value in rule’s condition, and recommended med-

ication. For example, the rule of ID 4 represents that patients with age<=18 and with 
disease of graves should be treated with MMI therapy, but avoiding PTU therapy. 

Data Preprocessing 

Medication data was cleaned by fuzzy matching the generic name with the ATC (Ana-

tomical Therapeutic Chemical) coding system and 5-digit ATC code was used to repre-

sent the category of drugs. Our recommendation is also on the level of drug categories 

instead of drug generic name as the medication principles mentioned in guidelines are 
mainly at this level. Another reason is that statistic errors and bias would be much larg-

er with drug generic names than with drug categories. In total, seven drug categories 

are identified for hyperthyroidism medication: sulfur-containing imidazole derivatives 

(ATC code: H03BB), thiouracils (ATC code: H03BA), non-selective β blocking agents, 

(ATC code: C07AA), selective β blocking agents (ATC code: C07AB), thyroid hor-

mones (ATC code: H03AA), glucocorticoids (ATC code: H02AB) and various thyroid 
diagnostic radiopharmaceuticals (ATC code: V09FX). 

Diagnosis and history diseases data were prepared and standardized using ICD10. 

Records about image tests and laboratory tests were standardized by mapping to our 

standard clinical term sets. 

Feature Selection and Medication Pattern Mining  

After data-preprocessing, feature selection was carried out to make decision tree model 

with better performance [14]. Features were selected based on following criteria. First, 

features with less than 50 samples of true value were excluded. Second, we dropped the 

features with no obvious relationship with any drug category, which was quantified by 

Table 2. Extracted rules from guideline for hyperthyroidism. 

ID Feature Value Medication

1 prediag_cvd True include β blocking agents 

2 prediag_thyroid_crisis True exclude MMI 

3 prediag_hypothyroidism True include thyroid hormones 

4 
age0_18 True 

include MMI exclude PTU 
prediag_graves True 

Note: Features are named in a way of “category_item”. Prediag means 
previous diagnosis, namely disease history. Abbreviations: cvd for 
cardiovascular disease, thyroid_crisis for thyrotoxic crisis, graves for Graves’ 
disease, age_0_18 stands for patients with age in range of 0 to 18. MMI for
methimazole which is the representative of sulfur-containing imidazole 
derivatives, PTU for propylthiouracil which belongs to thiouracils.
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relative risk (RR) analysis between each feature and each drug category. In this way, 

feature number was reduced from larger than 200 to about 20. Combining with features 

in the extracted rules, there were 28 features in total, including 4 image test features, 6 

laboratory test features, 17 features about previous diagnose/disease and 1 feature about 

basic information. All these features were selected as data input in decision tree con-

struction. 
Once feature part was done, we need to process the label part by identifying the 

medication patterns. Here we used association rule mining method (Aprior algorithms 

[15]) to identify the frequent sets of medications with a support threshold of 0.1%. As 

shown in Table 3, there were 20 medication patterns identified for hyperthyroidism 

treatment. Among all the prescriptions, the most popular one was sulfur-containing 

imidazole derivatives only, which accounted for about 37% of samples. This is in con-
sistent with the fact that sulfur-containing imidazole derivatives is the first priority in 

antithyroid drug therapy except for special cases [12][13]. 

Nested Decision Tree Construction 

The construction of nested guideline-based decision tree contains two steps. First, we 

selected rule-obeyed samples, as defined in the method section, to construct the rule-
based tree. Among the total 83360 medical records, only 4246 of them could satisfy the 

Table 3. Description of medication pattern for hyperthyroidism. 

Index Medication Patterns Ratio

0 Glucocorticoids 0.9%

1 Various thyroid diagnostic radiopharmaceuticals 0.5%

2 Selective β blocking agents 1.7%

3 Sulfur-containing imidazole derivatives 36.8%

4 
Glucocorticoids + Sulfur-containing imidazole 
derivatives 

0.2% 

5 
Selective β blocking agents + Sulfur-containing 
imidazole derivatives

3.0% 

6 Thyroid hormones 3.9%

7 Selective β blocking agents + Thyroid hormones 0.1%

8 
Sulfur-containing imidazole derivatives + 

Thyroid hormones
4.6% 

9 
Selective β blocking agents + Sulfur-containing 
imidazole derivatives + Thyroid hormones

0.4% 

10 Non-selective β blocking agents 3.3%

11 Glucocorticoids + Non-selective β blocking agents 0.1%

12 
Sulfur-containing imidazole derivatives + Non-

selective β blocking agents
14.5% 

13 
Thyroid hormones + Non-selective β blocking 
agents 

0.1% 

14 
Sulfur-containing imidazole derivatives + Thyroid 
hormones + Non-selective β blocking agents

0.8% 

15 Thiouracils 18.1%

16 Selective β blocking agents + Thiouracils 1.6%

17 Thyroid hormones + Thiouracils 1.4%

18 Non-selective β blocking agents + Thiouracils 7.7%

19 
Thyroid hormones + Non-selective β blocking 
agents + Thiouracils

0.3% 

Note: In combination prescriptions, each drug category is connected using the
“+” sign. Medication patterns with ratio larger than 3.5% are marked in bold.
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condition in one or more rules and were selected as rule-covered samples, since the 

guideline only covers patient populations with limited clinical conditions. In rule-

covered samples, the samples which had prescription consistent with rule recommenda-

tions were selected as rule-obeyed samples for train set and the rest were chosen as test 

set. Second, rule-uncovered samples were used to further expand the rule-based tree, 

where 80% of these samples were chosen as the train set and the rest 20% as the test set. 
In that way, a nested decision tree was constructed and it could be validated that rec-

ommendations given by this tree not only obey guidelines, but also are more patient-

specific.  

Rule-Based Decision Tree Construction 

The key idea to construct a rule-based decision tree is adding a bias factor � to rule-

related features when selecting features to split the tree. Therefore, we first explored 

the parameter space to maximize the number of rules emerged on the rule-based deci-

sion tree. For explanation, if a rule was emerged on the tree, we mean all features in a 

rule are used as the splitting features in one or more paths of the decision tree.  

In the decision tree construction, three parameters are involved. Figure 2 shows the 

change of number of rules emerged on the decision tree with max_depth and � in a 

fixed min_samples_leaf. With min_samples_leaf setting to 0.3% of the sample size of 

train data, we tested � with 1.5, 5, 10, 15 and max_depth from 2 to 9, we found that the 

best case where all rules are emerged in the tree occurs when � and max_depth are 

large. Finally, we chose � to be 10, and max_depth to be 4 as a balance between rule 

compliance and complexity of the tree. The chosen parameters enabled all 4 rules to be 

satisfied in the rule-based tree as denoted in a slash-shaded box in Fig. 2. 

Further Expansion to Nested Tree 

With the rule-based tree ready, a nested tree is further built with rule-uncovered sam-
ples. Figure 3 shows the final nested tree with the rule-based tree on the top and two 

giant branches derived from rule-uncovered data at the bottom. Abbreviations of fea-

ture names are listed on the upper-right in the figure. The leaf nodes are represented in 

curved boxes where top three medication patterns are listed with corresponding ratios. 

Note that, for the rule-based tree, the satisfied (emerged) rules are marked in the corre-

sponding paths.  
 

 

Figure 2. Parameter exploration for rule-based tree: the grids in the plot are colored according to the number 
of rules emerged on the decision trees. 
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From Fig. 3, some branches refine the rule-based decision tree. For example, a fea-

ture named prediag_TH_toxic (meaning thyrotoxicosis) could further split Rule4-

satisfied samples into two groups where the preference to treatment pattern 3 and 12 

are diverged. The only difference between treatment pattern 3 and 12 is the existence of 

non-selective β blocking agents as listed in Table 3. Therefore, according to this parti-

tion, patients who were not suffered from thyrotoxicosis have higher chance to take 
non-selective β blocking agents than those who were. Such information revealed by 

data refines the rule-based tree and provide preciser partition to the whole cohort. 

In addition to refining the rule-based tree, the rule-uncovered data contributes in 

generating new branches that supplement the tree. Those new branches contain features 

of diseases history (prefix: prediag_) as well as laboratory (prefix: lab_) and image 

(prefix: image_) test which enrich our knowledge of hyperthyroidism treatment.  

Assessment of Nested Decision Tree Model 

As our nested decision tree was constructed by a combination of rule-based part and 

data-based expansion part with respective training sets, we also assessed the tree sepa-

rately base on two kinds of test sets as mentioned before. For the rule-based part, the 

objective was to achieve best compliance with guideline rule, so the adherence of med-

icine recommendations with extracted rules was evaluated. Note that the true labels in 
this assessment were the output of applied rules. For data-based expansion part, we 

compared the agreement of the top three recommendations with true prescription in the 

data. 

To evaluate our nested decision tree in the aforementioned two perspectives, we 

constructed a baseline decision tree using general CART algorithm and selected the 
same tree parameters (e.g. max_depth) with the nested decision tree. We used rule-

covered test samples to validate the guideline adherence of the nested tree, while the 

rule-uncovered test samples were used to test the accuracy of nested tree. The result is 

summarized in Table 4. We found that for rule-covered test data, the guideline compli-

ance of medication recommendation was significantly increased using our model com-

pared with the baseline. For rule-uncovered test data, the accuracy of top 3 recommen-
dations using our model was slightly lower than the baseline due to the early partition 

by rule-related features.  

 

Figure 3. The final nested tree: the upper dashed box denotes rule-based tree and the lower dash box shows 
the tree expansion using rule-uncovered data.
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Discussion 

In this paper, we proposed a method to build a nested decision tree that can provide 
guideline-concordant and patient-specific medication recommendation. As mentioned 

in [16], integrating information from guideline and data becomes a trend in electronic 

health record data mining. By combining knowledge-driven and data-driven models, 

our approach enables the personalized recommendation and ensures guideline adher-

ence.  

Our approach was tested with hyperthyroidism data. The method can be general-
ized to other diseases. By adjusting related parameters, our approach can be applied in 

different scenarios. For example, in case of strong demand to make rules occurring on 

the decision tree, � should be large. Proper parameter setting requires to adjust back 

and forth according to the research purpose. In case that there is no rule-covered sam-

ple, the rule-based tree can still be constructed by enumerating all combinations of the 
extracted rules. 

Patterns revealed by the data can provide us hints of potential important considera-

tions in treatment, which can be validated through randomized controlled trials before 

being adopted by clinical guideline. 

The limitation of current work is that the effect of our approach largely depends on 
the quality of original medical data, especially in the tree expansion phase. Besides, 

decision tree is a weak classifier and it remains open to investigate combining clinical 

knowledge with more advanced data-driven models. At current stage, we used decision 

tree as it was straightforward to visualize the integrated result. More efforts would be 

invested to explore combination of clinical knowledge with other machine learning 

methods in the future. 

Conclusions 

In this paper, we proposed a method to build a guideline-based decision tree for medi-

cation recommemdation, by leveraging both the clinical knowledge and electronic 

medical records. In this way, fine-granular personalized medication recommendations 
with good guideline adherence can be achieved. The effectiveness of our approach was 

validated in a real-world case study of patients with hyperthyroidism. Compared with 

general decision tree method, our approach showed improved guideline adherence with 

slight compromise on accuracy in the test data.  

Table 4. Assessment of the nested and baseline decision trees. 

Indicator Test set Nested tree Baseline 

Adherence of top 1 
recommendation with rules 

Rule-covered 
test data 

95.2% 7.0% 

Adherence of top 3 
recommendations with rules* 

Rule-covered 
test data 

98.1% 86.4% 

Accuracy of top 3 
recommendations 

Rule-
uncovered 
test data 

69.5% 70.5% 

Note: * means any result in top 3 recommendations agrees with rules.
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