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Abstract. Modern medical research requires access to patient-level data of 
significant detail and volume. In this context, privacy concerns and legal 
requirements demand careful consideration. Data anonymization, which means 
that data is transformed to reduce privacy risks, is an important building block of 
data protection concepts. However, common methods of data anonymization often 
fail to protect data against inference of sensitive attribute values (also called 
attribute disclosure). Measures against such attacks have been developed, but it has 
been argued that they are of little practical relevance, as they involve significant 
data transformations which reduce output data utility to an unacceptable degree. In 
this article, we present an experimental study of the degree of protection and 
impact on data utility provided by different approaches for protecting biomedical 
data from attribute disclosure. We quantified the utility and privacy risks of 
datasets that have been protected using different anonymization methods and 
parameterizations. We put the results into relation with trivial baseline approaches, 
visualized them in the form of risk-utility curves and analyzed basic statistical 
properties of the sensitive attributes (e.g. the skewness of their distribution). Our 
results confirm that it is difficult to protect data from attribute disclosure, but they 
also indicate that it can be possible to achieve reasonable degrees of protection 
when appropriate methods are chosen based on data characteristics. While it is 
hard to give general recommendations, the approach presented in this article and 
the tools that we have used can be helpful for deciding how a given dataset can 
best be protected in a specific usage scenario. 
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1. Introduction 

To be able to develop methods for individualized prevention, diagnosis and therapy, 
modern medical research requires data of comprehensive breadth and depth [1]. In 
order to create the required big datasets, patient-level data must be re-used for 
secondary purposes and shared across institutional boundaries [2,3]. In this context, an 
important recent project is the German Medical Informatics Initiative (MII) in which 
four consortia work together on creating a nation-wide infrastructure for data 
integration and sharing [4–7]. In such projects, data protection aspects and legal 
requirements, e.g. specified by the European General Data Protection Regulation 
(GDPR) [8] or the US Health Insurance Portability and Accountability Act 
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(HIPAA) [9], need careful consideration. An important building block of data 
protection concepts is anonymization, which means that data is transformed to reduce 
privacy risks. This approach has, for example, been used to perform the first large-scale 
cross-site analysis within the context of the MII (the so called “demonstrator study”, 
which focused on multimorbidity and rare diseases). 

In the area of data anonymization, bridging the gap between legal requirements 
and technical solutions is challenging and subject of ongoing research [10]. One 
important issue is that, technically, the risk of re-identification is a continuum, while 
the legal perspective is dichotomous. In this article, we refer to the threats outlined in 
the Opinion 05/2014 on Anonymisation Techniques by the Article 29 Working Party 
[11], an independent advisory body on data protection and privacy in the European 
Union, which has now been replaced by the European Data Protection Board. These 
threats are: (1) singling out, (2) linkage and (3) inference attacks. 

Anonymization methods which reduce the risk of successful linkage or singling 
out are widely applied in the field, but these methods are often not sufficient to prevent 
attackers from inferring sensitive personal information (also called attribute disclosure). 
Various models can be used to quantify the risk of attribute disclosure and to transform 
data to make sure that risks fall below a specified threshold [11]. However, it has been 
argued that such models are of little practical relevance, because implementing them 
requires significant data transformations which may remove an unacceptable amount of 
information [12]. 

Although the influence of anonymization on data utility has been studied 
extensively (see e.g. [13–17]), the literature lacks guidance on the strengths and 
weaknesses of different approaches for protecting biomedical data from attribute 
disclosure and insights into factors influencing their performance. The objective of the 
work described in this article was to study indicators and tools that can help to decide 
when and how biomedical data can be protected from sensitive attribute disclosure 
without compromising its usefulness too much. We focused on truthful transformation 
methods, which maintain the plausibility of data, as this is an important requirement in 
the biomedical domain [18].  

2. Methods 

2.1.  Background 

Singling out means that an attacker is able to isolate some or all records which identify 
an individual in a dataset [11]. This threat is also mentioned as an example of 
re-identification in the GDPR [8]. Linkability denotes the ability to link two (or more) 
records relating to the same individual or a group of individuals, either within the same 
dataset or in different datasets. Technically, the attributes that can be used for such 
attacks are called quasi-identifiers. Attribute inference (or disclosure) [19] occurs when 
specific individuals can be associated with attribute values representing sensitive 
information (e.g. a diagnosis indicating an HIV infection). An attribute which may take 
sensitive values is called a sensitive attribute. Table 1 shows an example dataset in 
which the risk of singling out and successful linkage has been reduced by generalizing 
the attribute “Age” and removing the values of the attribute “Sex”. 
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Table 1. Example dataset which has been protected against re-identification only. 

Quasi-identifiers Sensitive attribute 

Age Sex State Diagnosis 

[60,80[ * NY Colon cancer 

[60,80[ * NY Colon cancer 

[60,80[ * NY Colon cancer 

[60,80[ * NY Breast cancer 

[20,50[ * NY Hodgkin disease 

[20,50[ * NY Breast cancer 

[20,50[ * NY Colon cancer 

 
 
This transformation increases the indistinguishability of the quasi-identifiers while at 
the same time reducing data utility. Despite the resulting reduction of risks of 
successful singling out or linkage, the first group of records is susceptible to attribute 
disclosure: if an adversary targets the record about a 65-year-old male living in the 
state of New York – which matches the first set of four records with indistinguishable 
quasi-identifiers – it can be inferred with high probability that the diagnosis is “Colon 
cancer”. 

Privacy models can be used to estimate the degree of protection of a dataset 
against such attacks and they can hence be used to control the risks involved with 
sharing or re-using data by transforming the data in such a way that a given risk 
threshold is met. The best-known privacy model is k-anonymity [20], which guarantees 
indistinguishability regarding the quasi-identifiers and hence prevents singling out and 
reduces the risk of correct linkage. Privacy models for protecting data from attribute 
disclosure measure risks either based on a quantification of the diversity of sensitive 
data or on a quantification of the distances between the distributions of sensitive data in 
certain groups of records and in the overall dataset. Distance-based models have been 
developed more recently, with the aim to overcome limitations of diversity-based 
models, for example with respect to skewed data [21]. Well-known examples are 
ℓ-diversity [22], which is diversity-based, and t-closeness [21] as well as 
β-likeness [23], which are distance-based. 

2.2. Experimental Design 

The aim of our work was to gain insights into how well different privacy models for 
protecting data against attribute disclosure are suited to balance risks against output 
data utility and what factors need to be considered to achieve an optimal trade-off. To 
this, we studied the results obtained with different privacy models in relation to trivial 
baseline solutions. First, we generally protected the data from singling out and linkage 
using the k-anonymity privacy model. Next, we constructed baselines for risk and 
utility using the following trivial protection measures: 

1. Protecting the datasets against attribute disclosure by completely removing all 
sensitive attribute values (Full Protection) 

H. Spengler and F. Prasser / Protecting Biomedical Data Against Attribute Disclosure 209



2. Not protecting the dataset from attribute disclosure by keeping the sensitive 
attribute values as-is (No Protection) 

Within this context, we compared the trade-off between risks and utility of datasets 
that have been protected against attribute disclosure using different privacy models and 
parameterizations. 

Technically, the risk of attribute disclosure corresponds to the ability of an attacker 
to infer values of the sensitive attribute from values of the quasi-identifiers. We 
modeled this by using logistic regression classifiers that have been trained on 
anonymized data to predict the values of the sensitive attribute using the 
quasi-identifiers as features [24]. We quantified the risk by determining the prediction 
accuracy using 3-fold cross-validation. For measuring the utility of output data, we 
used a general-purpose model that captures the granularity of output data [25]. 
All experiments were performed using the open source data anonymization tool ARX, 
which we configured to use local generalization [26], which is a truthful transformation 
method. Protection against singling out and linkage has been implemented using 
5-anonymity [20]. For additionally protecting the datasets against attribute disclosure, 
we used the following privacy models: distinct-ℓ-diversity [22], t-closeness using the 
earth-movers distance based on value generalization hierarchies [21] and enhanced 
β-likeness [23]. For each model, we selected a representative set of parameterizations 
covering the complete spectrum of reasonable values. The source code of our 
experiments is available online [27].  
 
 

Table 2. Statistical properties of the sensitive attributes in the evaluation datasets. 

Dataset Sensitive 
attribute 

Domain 
size 

Min. 
frequency 

Max. 
frequency 

Dispersion 
index 

Census Marital status 5 0.014 0.446 0.777 

Health interviews Marital status 10 1.3∙10-5 0.236 0.899 

Census Education 25 0.010 0.176 0.943 

Health interviews Education 26 0.001 0.192 0.952 

 
 
To be able to study influencing factors with respect to data characteristics, we selected 
datasets with a similar schema but different statistical properties. The Health 
interviews 2  dataset consisted of 1,193,645 records from the U.S. National Health 
Interview Survey (NHIS). The Census 3  dataset contained 68,725 responses to the 
American Community Survey (ACS) from randomly selected people living in the state 
of Massachusetts in the U.S. We selected Sex, Age and Race as quasi-identifiers, since 
demographic parameters are typically considered to be associated with a high risk of 
re-identification [28] and to provide comparability with prior studies [16,20,25]. As 
examples for sensitive attributes we selected Marital status as well as Education and 
protected them from inference attacks.  

Table 2 provides an overview of the statistical properties of the sensitive attributes 
in the evaluation datasets. We used the dispersion index [29], as an indicator for the 

                                                           
2 https://nhis.ipums.org/nhis/ 
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skewness of the distribution of attribute values (skewness of the sensitive data, 
henceforth). A value of 1 represents minimum skewness with a uniform distribution of 
two or more distinct attribute values. A value of 0 represents maximum skewness 
where there is no distribution of values but only one uniform value. 

3. Results 

To visualize the results of our experiments, we computed risk-utility curves that 
summarize the results obtained for the different privacy models and parameterizations 
into one diagram per dataset and sensitive attribute. Each data point represents an 
anonymized output dataset for a specific model and parameter value. The x- and y-
coordinates of the data points represent the according risk and utility values, which 
have been normalized in relation to the baseline approaches “Full Protection” (lowest 
risk, lowest utility) and ”No Protection” (highest risk, highest utility). Table 3 contains 
an overview of the values obtained for the baseline approaches.  
 
 

Table 3. Baseline values for the evaluation datasets. 

Dataset Sensitive Full Protection No Protection 
attribute Risk Utility Risk Utility 

Census Marital status 0.0 0.7481 0.7495 0.9981 

Health interviews Marital status 0.0 0.7498 0.6108 0.9998 

Census Education 0.0 0.7481 0.3609 0.9981 

Health interviews Education 0.0 0.7498 0.3954 0.9998 

 
 

The risk-utility curves are shown in Figure 1. The results have been sorted such that the 
experiment with the highest skewness of sensitive data (Census / Marital status) is on 
the left and the experiment with the lowest skewness of sensitive data (Health 
interviews /Education) is on the right. 

A perfect risk utility curve would contain a data point with zero risk and 100% 
utility. The line between (0,0) and (1,1) represents all solutions where reductions in risk 
are directly proportional to reductions in utility. The further a solution is above this line, 
the higher the increase in protection relative to the reduction in utility. Solutions below 
the line can be considered suboptimal, as they represent trade-offs that are worse than 
those provided by the baseline approaches. However, it must be noted that these 
solutions are not necessarily worthless, particularly in scenarios where neither of the 
two baseline approaches can be used. 

As can be seen, the privacy models studied in this article enable a balancing of 
risks and utility within the spectrum of removing all sensitive data (0,0) and not 
protecting a dataset at all (1,1). However, when protecting datasets with skewed 
sensitive attributes (Census / Marital status and Health interviews / Marital status) no 
solutions could be found that provide a better risk-utility trade-off than the baseline 
approaches. 
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Figure 1. Risk-utility curves for the privacy models ℓ-diversity, t-closeness, and β-likeness. The solution 
with the best risk-utility trade-off above the linear relationship is marked with an arrow. 

 
 

For datasets with low skewness of the sensitive data (Census / Education and Health 
interviews / Education), particularly when using ℓ-diversity and β-likeness, there were 
quite a few solutions that provided significant reductions in risk without affecting data 
utility too much. Using more sophisticated distance-based models did not lead to better 
results compared to outputs produced using the very basic ℓ-diversity model, which 
simply restricts the number of distinct sensitive attribute values per group of 
indistinguishable records [22]. This was true even for data sets with highly skewed 
sensitive data. In both experiments with the Health interviews datasets, t-closeness 
provided the worst trade-offs of all models. 

4. Discussion 

Our work is not the first to study the risk-utility trade-off provided by methods for 
protecting data against attribute disclosure. Notably, Brickell and Shmatikov 
thoroughly studied the effects of implementing common privacy models on the 
performance of statistical classification models trained on output data [16]. However, 
as Li and Li have pointed out, the methodology used in [16] is unsound [30]. Moreover, 
when studying the effect of methods for protecting data from attribute disclosure, 
statistical classification is typically used for measuring data utility while we used it to 
estimate the risk of sensitive attribute inference. Furthermore, we also considered the 
properties of the distribution of sensitive attribute values. Finally, we have put a 
specific emphasis on truthful data transformation methods which have been 
recommended for biomedical data [31,32]. 

Our results indicate that it is indeed hard to achieve a reasonable trade-off for 
skewed data, even with distance-based models that have been developed specifically 
for this purpose [21,23]. When data is only moderately skewed, both β-likeness and 
ℓ-diversity can yield significantly better risk-utility trade-offs than the baseline 
approaches. Interestingly, using ℓ-diversity, which is the simplest model with the most 
intuitive semantics, often provided better results than more recent and more 
sophisticated models like β-likeness. 

In summary we conclude that – contrary to popular opinion – it can be possible to 
significantly reduce the risk of successful inference attacks using well-known and 
truthful anonymization methods. However, it is important to consider the specifics of 
the dataset that is to be protected and the context of data usage. For this purpose, an in-
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depth analysis must be performed, and the approach used in this paper can serve as a 
blueprint. To calculate the necessary statistics and analyze risk-utility trade-offs, 
common anonymization tools such as ARX [26] and sdcMicro [33] can be used. The 
source code of our analysis is available online [27]. However, in future work it should 
be considered to extend the tools mentioned with additional methods to more directly 
support the processes described (e.g. through the graphical user interface). Our results 
indicate that particular attention should be directed towards simple methods with 
intuitive semantics, such as ℓ-diversity, and weak parameterizations, such as ℓ ≤ 5. 

One of the main limitations of the present work is the use of specific methods for 
quantifying risks and data utility. In fact, different measurement methods may be 
relevant in different data use scenarios. This is particularly true for methods that 
quantify data utility. 
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