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Abstract. Gene expression data is commonly available in cancer research and 
provides a snapshot of the molecular status of a specific tumor tissue. This high-
dimensional data can be analyzed for diagnoses, prognoses, and to suggest treat-
ment options. Machine learning based methods are widely used for such analysis. 
Recently, a set of deep learning techniques was successfully applied in different 
domains including bioinformatics. One of these prominent techniques are convolu-
tional neural networks (CNN). Currently, CNNs are extending to non-Euclidean 
domains like graphs. Molecular networks are commonly represented as graphs de-
tailing interactions between molecules. Gene expression data can be assigned to 
the vertices of these graphs, and the edges can depict interactions, regulations and 
signal flow. In other words, gene expression data can be structured by utilizing 
molecular network information as prior knowledge. Here, we applied graph CNN 
to gene expression data of breast cancer patients to predict the occurrence of meta-
static events. To structure the data we utilized a protein-protein interaction net-
work. We show that the graph CNN exploiting the prior knowledge is able to pro-
vide classification improvements for the prediction of metastatic events compared 
to existing methods. 

Keywords. Gene expression data, classification, CNN, prior knowledge, molecu-
lar network. 

1. Introduction 

Technologies as microarray gene-expression profiling and next-generation sequencing 
are becoming more and more available and play a significant role in cancer prognosis, 
for example in discovering individual biomarkers [1]. Furthermore, high-throughput 
technologies produce huge amounts of data that can be used for assessment of metastat-
ic events. At the moment, deep learning techniques are well known to show prominent 
results in many research fields with big and complex data. 

In recent years deep learning was applied to a wide range of problems in various 
areas. Deep learning methods are aimed at the automatic learning of data representa-
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tions (features) needed for machine learning task. These methods demonstrated state-
of-the-art performance in visual object recognition, object detection, speech recognition 
as well as other domains such as drug discovery and genomics [2]. One of the most 
popular methods of deep learning are Convolutional Neural Networks (CNN). They 
show cutting edge results for data that are spatially structured. Different classes of such 
data have different spatial dimensionality: 2D for images, 3D for video and 1D for 
signals and sequences. The main property of CNNs is a capability of capturing local 
spatial patterns in natural signals and merging them into high-level abstractions. 

The usual CNN architecture consists of three types of layers: convolutional layers, 
pooling layers, and fully connected layers. The first two layers utilize the Euclidean 
structure of the data preparing informative features for the fully connected neural net-
work layers. For grid-structured data as images, the convolution layer performs filter-
ing operation to extract highly correlated local groups of pixels forming the same pat-
tern in different parts of the image. A nonlinear function is applied to each output of 
filtering. As a result, the feature map is created per each filter, consisting of the feature 
values based on the same pattern. As for the pooling layer, since the slightly shifted 
position by 1 row or 1 column can give slightly different feature values for the same 
pattern it merges the feature values into one [2]. Usually this operation is performed by 
computing the maximum of a local patch of features. In such a way, the dimensionality 
reduction and the gain of invariance to small shifts are performed. 

Deep learning and CNNs are already used in the field of bioinformatics [3]. As an 
example, CNNs were applied to gene expression data for tumor type classification [4]. 
One should notice that in Lyu and Haque [4] the gene expression data were trans-
formed into images and then CNNs were applied to them. In general, gene expression 
data do not have any spatial structure, and the number of genes is much higher than the 
number of patients that might lead to poor classification performance on the test set. 
Thus to deal with this problem, still approaches are needed that utilize prior knowledge 
based on known interactions in molecular networks. Here we demonstrate that the 
classification performance can be improved by a combination of deep learning and 
prior biological knowledge. 

Nowadays, deep learning is extending to Non-Euclidean domains. This extension 
is based on generalization of CNNs [5] to graphs and manifolds. We applied graph 
CNN [6] to gene expression data structured by a molecular network representing the 
connection between genes. In other words, since each vertex of a molecular network is 
assigned a gene expression value, we are performing a graph-signal classification task. 
Recently, quite similar methodology was applied to classify breast cancer subtypes 
utilizing gene expression data structured by protein-protein interaction network [7]. 
Breast cancer is one of the three most common cancers in industrialized countries [8]. 
Patients often develop metastases that limit survival, as there has not been any curative 
therapy for them [9]. We show that graph CNN outperforms more classical machine 
learning methods at the prediction of metastatic events in breast cancer. 

2. Materials and Methods 

2.1.  Breast Cancer Data 

We used the breast cancer patient data previously studied and preprocessed in research 
[10]. The data consist of 10 public microarray datasets measured on Affymetrix Human 
Genome HG-U133 Plus 2.0 and HG-U133A arrays. The datasets have accession num-
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bers GSE25066, GSE20685, GSE19615, GSE17907, GSE16446, GSE17705, 
GSE2603, GSE11121, GSE7390, GSE6532 and are available from the Gene Expres-
sion Omnibus (GEO) [11] data repository. The RMA probe-summary algorithm [12] 
was used to process each dataset after which they were combined together on the basis 
of HG-U133A array probe names and quantile normalization was applied over all da-
tasets. In the case of few probes mapped to one gene the probe with the highest average 
value was taken. In the end, we ended up with 12179 genes per each patient. Further, 
patients with and without metastatic events were selected to formulate two classes for 
the prediction task: 393 patients with metastasis within the first 5 years, 576 patients 
without metastasis having the last follow up between 5 and 10 years. 

2.2.  Protein-Protein Interaction Network 

We used the Human Protein Reference Database (HPRD) protein-protein interaction 
(PPI) network [13] to structure the gene expression data. This PPI network consists of 
binary interactions between pairs of proteins and can be represented as an undirected 
graph. One should notice that this graph is not connected. The genes from gene expres-
sion data can be mapped to the vertices of the PPI network. In such a way, the resulting 
PPI graph has 7168 vertices (genes) matched, and it has 207 connected components. 
The main connected component has 6888 vertices, and each of the 206 other compo-
nents has from 1 to 4 vertices. The graph CNN requires graph to be connected so all the 
machine learning methods had 6888 genes as an input. 

2.3.  Problem formulation 

Initially, the problem is formulated as a binary classification of gene expression data 
 to target variable  representing the occurrence of metastatic event.  

is a number of samples (patients) and  is a number of features (genes). Additionally, 
we incorporate the information of the molecular network which is represented as a 
undirected graph , where  and correspond to the sets of vertices and 
edges respectively.  is an adjacency matrix. The number of vertices is equal to the 
number of genes . A row  of gene expression matrix  contains data from one pa-
tient and can be mapped to the vertices of the graph . The values of  are interpreted 
as a graph signal. 

2.4. Graph Convolutional Neural Network and Multilayer Perceptron 

The graph CNN [6] captures localized patterns of a graph signal via convolution and 
pooling operations performed on a graph. The convolution operation bases on the spec-
tral graph theory utilizing the convolution theorem and graph Fourier transform. The 
graph convolutional filter can be approximated by a parameterized expansion of Che-
byshev polynomials of graph frequencies [6]. Such filter of polynomial degree  local-
izes the signal pattern in K-hop neighboring nodes. For the pooling operation, the graph 
is coarsened exploiting a graph clustering technique. We applied the graph CNN with 
following hyperparameters for learning. Two convolutional layers were used with 32 
convolutional filters and polynomial degree 8 per each layer. Maximum pooling of size 
2 applies to both of the convolutional layers. Two fully connected layers have 512 and 
128 units consequently. ReLU (rectified linear unit) activation function was used and 
cross entropy loss was minimized. Application of usual CNN is not straightforward for 
gene expression data since it is not spatially ordered. Therefore, we applied deep Multi-
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layer Perceptron implemented in Keras [14], on the same set of genes but without prior 
knowledge structuring the data. The hyperparameters of our deep neural network are 
the following: 4 hidden layers and each of them consist of 1024 units with ELU (expo-
nential linear unit) activation function. Cross entropy loss was minimized. 

2.5. Random Forest and Lasso Logistic Regression 

Random Forest and lasso penalized Logistic Regression were used as baseline meth-
ods. Random Forest is a tree-based ensemble machine learning technique combining 
bagging and random subspace method. It is widely used for high-dimensional data 
analysis, and considered as a standard tool for class prediction and gene selection with 
microarray data [15]. Logistic regression with lasso regularization is another classical 
method for classification of high-dimensional data. Lasso penalty allows shrinking of 
some coefficients to zero so that the variable selection is automatically performed. For 
the both baseline methods we utilized RandomForestClassifier and LogisticRegression 
classes implemented in Scikit-learn package [16]. 

3. Results 

3.1. Our approach 

Our approach is to structure gene expression data by applying it to prior knowledge on 
molecular interactions and to feed this structured data as input for the graph CNN deep 
learning method. The workflow for predicting metastasis events is shown in Figure 1.  

 
Figure 1. The schema of suggested workflow: 1. Patients’ microarray data is preprocessed. 2. Genes are 
mapped to the vertices of PPI network. 3. The graph CNN processes gene expression data as graph signals. 4. 
The graph CNN predicts whether the patient is getting metastases during the first 5 years or not. 
The endpoint is to predict the occurrence of a metastatic event for a patient. In other 
words, to classify patients into 2 groups, metastatic and non-metastatic. The first group 
corresponds to patients with metastasis within the first 5 years and the second concerns 
patients who are metastasis-free within first 5 years. Graph CNNs were developed 
recently, and according to the knowledge of the authors the approach described in the 
paper was not used for metastatic event prediction. 

3.2. Comparison of machine learning methods 

We compared the graph CNN approach with Multilayer Perceptron, Random Forest 
and Lasso Logistic Regression. The performance was assessed by 10-fold cross valida-
tion. For each of the data splits the model was trained on 9-folds and the classification 
was evaluated using 10th fold as a validation set. For training, the input was standard-
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ized and the validation sets were scaled according to the means and standard deviations 
on the training set. For each machine learning algorithm the hyperparameters were the 
same. For each data split the graph CNN and Multilayer Perceptron were trained on the 
same number of epochs. In this paper we used the most common metrics: area under 
ROC curve (AUC), accuracy and F1-weighted score. The metrics were averaged over 
folds and the standard errors of their means were calculated (Table 1). 

Table 1. Performance comparison of machine learning methods on metastatic event prediction. 
Method 100*AUC Accuracy, % F1-weighted, % 
Graph CNN 82.16±1.25 76.18±1.36 75.86±1.35 
Random Forest 81.40±1.76 74.74±1.67 74.00±1.82 
Multilayer perceptron 81.01±1.84 73.92±1.48 73.64±1.54 
Lasso Logistic Regression  80.95±1.61 74.74±1.27 74.53±1.27 

The graph CNN demonstrates higher values for all three metrics estimating the 
quality of metastatic event prediction. In such a way we show that utilization of prior 
knowledge into graph CNN is beneficial in comparison to standard machine learning 
methods for discriminating classes of patients with or without metastases within 5 
years after treatment. 

4. Discussion 

We demonstrated that the graph CNN applied to graph-structured data predicts meta-
static event better than other classical methods that are trained on the same set of fea-
tures (gene set) and that do not incorporate any prior knowledge. We predicted the 
occurrence of metastatic events in a breast cancer data set. We have shown that even 
under the limitations of available data (from deep learning perspective) graph CNN 
could still outperform other methods. It is well known for breast cancer that molecular 
subtypes show metastatic differences [10] and thus molecular subtypes influence me-
tastasis-free survival. However, additional confounding factors (e.g. age) may exist that 
mask the association between input and output variables. The consideration of such 
confounding factors may be additional future work to consider to evaluate the practical 
value of such a classifier. Turning event times into a binary endpoint might lead to 
information loss. One could adapt our method to predict metastasis-free survival. 

To structure the gene expression data we utilized only the main connected compo-
nent of the PPI graph. The majority of other vertices are just single nodes of the PPI 
graph, thus the prior knowledge of the molecular network does not structure them. In 
future work we consider utilization of the rest of genes that were not mapped to the 
main connected component as additional input units of fully-connected layer of graph 
CNN. The authors in Rhee et al [7] applied the graph CNN to RNA-seq gene-
expression data structured by the PPI network extracted from STRING database [17] to 
predict breast cancer subtypes. The STRING PPI network contains weights on pairs of 
proteins that interact with each other. 4303 genes were selected. It was also shown that 
graph CNN could outperform the baseline machine learning methods for the specified 
classification task. In our case, we have 6888 genes and a binary topology which lead 
to the hypothesis that graph CNN is able to capture meaningful data representation 
even if edges do not have weights. For future work we are planning to check how the 
weighted graph of STRING PPI would improve the classification performance and 
compare the two methods. 
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5. Conclusion 

In this study we showed that graph CNN applied to microarray gene expression data 
structured by PPI network outperforms other machine learning methods that do not use 
any prior knowledge. 
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