
Spreadsheet Model Generator (SMOG):

A Lightweight Tool for

Object-Spreadsheet Mapping

Alexandr UCITELIa,1, Christoph BEGERa,b, Stefan KROPFa, and Heinrich HERREa
a
 Institute for Medical Informatics, Statistics and Epidemiology (IMISE),

University of Leipzig, Germany
b
 Growth Network CrescNet, University of Leipzig, Germany

Abstract. In the life science domain, experts are usually familiar with spreadsheet
software and often use it in their daily work to collect and structure required
domain knowledge. The processing and analysis of spreadsheet data is an
important task that must be supported by efficient software solutions. A typical
application scenario is for example an integration of spreadsheet data (specified or
derived) in an ontology to provide reasoning or search. Different converter tools
were developed to support a spreadsheet-to-ontology transformation. Such tools
allow often only a relatively simple structure of the spreadsheet template or they
require complex mapping processes to map the spreadsheet and ontological
entities. In many cases, it is impossible to use the existing converter tools because
the spreadsheet data must be processed first before the derived data can be
integrated into the ontology. In such cases, an efficient and fast development of
customized software solutions is of great importance. In this paper, we present a
general spreadsheet processing framework to efficiently read and write spreadsheet
data. The Spreadsheet Model Generator (SMOG) provides a simple mechanism to
automatically generate the Java object model and mappings between object code
and spreadsheet entities. Our solution greatly simplifies the implementation of
spreadsheet access methods and enables an efficient development of spreadsheet-
based applications. The SMOG has already been used successfully in several
biomedical projects under real world conditions.

Keywords. Spreadsheet model, object mapping, reverse engineering,
programming model generation

1. Introduction

Nowadays, ontologies play a central role in various research as well as industrial

projects (see section 4.1). Developing a domain ontology requires not only knowledge

of ontological formalisms, but also background knowledge about the domain. The

cooperation between ontologists and domain experts is a much debated problem in the

literature and has to face some challenges. Because domain experts (such as biologists,

statisticians, quality managers or authority employees) are familiar with spreadsheet

software and often use it in their daily work, this solution is often the method of choice

to simplify the acquisition of domain knowledge. There are a lot of converter tools that

1 Alexandr Uciteli, IMISE, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany;

E-mail: auciteli@imise.uni-leipzig.de

German Medical Data Sciences: Shaping Change – Creative Solutions for Innovative Medicine
R. Röhrig et al. (Eds.)

© 2019 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI190814

110

allow a more or less direct (semi-) automatic transformation of spreadsheet data into an

ontology. These solutions have two major issues. Either they allow only a relatively

simple structure of the spreadsheet template, which degrades the usability by domain

experts, or they require complex mapping processes to map the spreadsheet data to

ontological entities. Besides, it is often not possible to directly integrate the spreadsheet

data into the ontology because they have to be processed beforehand (see examples in

section 4.1). For such cases, we developed the Spreadsheet Model Generator (SMOG)2,

a new approach to efficiently read and write spreadsheet data without having to be

familiar with existing spreadsheet software libraries. The SMOG provides a general

framework, which can be utilized by developing customized spreadsheet-based

applications (also ontology-independent), as well as by existing converter tools. Our

solution significantly simplifies the implementation of spreadsheet access methods and

enables an efficient development of spreadsheet-based applications.

2. State of the art

There are a lot of methodologies and tools [1–5] supporting transformation of

spreadsheet entries in OWL, which are already used in different life science projects.

Some of these tools support population of existing ontologies, some allow the

generation of spreadsheet templates from the ontology, and some provide expressive

languages to map spreadsheet and ontology entities. Such solutions do not directly

compete with our approach and could even benefit from it. In contrast to existing

converter tools, our approach focusses on use cases, where the spreadsheet data must

be processed first before the derived data can be integrated into the ontology. In such

cases, it is often impossible to use the existing converter tools, so that a customized

software solution must be developed. The software to support this task must consist of

three modules: (1) reading/writing spreadsheets, (2) reading/writing ontologies and (3)

a data processing module. The SMOG presented in this paper enables generation of a

spreadsheet handling module (1) and supports efficient processing of complex

spreadsheet templates.

3. Concept

The SMOG works similarly to Object-Relational Mapping (ORM) tools (such as

Hibernate [6]). The ORM tools try to overcome the paradigm mismatch between the

tabular data representation in relational databases systems and the object-graph

representation by object-oriented languages. The ORM connects object code to a

relational database and simplifies development through automatic data conversation

between database and object model.

By reverse engineering a spreadsheet schema (specified by an annotated

spreadsheet template), the SMOG provides a simple mechanism to automatically

generate the associated object model and mappings between object code and

spreadsheet entities (such as tables, fields and trees). Programmers of spreadsheet-

based applications get access to the spreadsheet entries directly via the generated object

2 https://github.com/Onto-Med/smog

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping 111

model. This approach abstracts from a concrete spreadsheet library and enables more

efficient development.

4. Implementation

4.1. Usage under real world conditions

Our solution has already been used successfully in several biomedical projects (Leipzig

Health Atlas (LHA) [7,8], OntoMedRisk [9], OntoPMS [10]) 3 under real world

conditions. In this section we introduce two of these projects.

4.1.1. OntoMedRisk: Development of an ontology-based software solution for

perioperative risk minimization

In the OntoMedRisk project, methods and tools were developed to identify and analyze

risks in perioperative processes in hospitals [9]. The developed software suite is based

on the Risk Identification Ontology (RIO), which provides a framework for risk

specification and reasoning. The specification of risks is a complex task that needs to

be performed by domain experts (medical staff). To facilitate this task, an Excel

template was developed which is intelligible to medical staff and can be used for the

software tools to transfer the specified information into the ontology. Figure 1 shows a

small part of the OntoMedRisk template to specify a possible risk.

Figure 1. OntoMedRisk template

The ontology generator tool RIOGen developed in the OntoMedRisk project

includes the SMOG as a component. The complete risk programming model was

automatically generated and used to efficiently read and integrate the risk specifications

in the ontology. A system was developed, which collects risk-relevant data from

various sources and provides it for the ontology-based risk identification and analysis.

The results of such an analysis are transmitted to the medical staff in form of context-

sensitive hints and alerts. About 30 risks related to cochlear implantation (e.g.,

infection risks, Figure 1) were implemented.

3 Funded by the German Ministry of Education and Research (BMBF). LHA: 031L0026,

OntoMedRisk: 01IS14022, OntoPMS: 01IS15056B.

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping112

4.1.2. OntoPMS: Development of an ontology-supported risk identification software for

the observation of medical products on the market (post-market surveillance, PMS)

During PMS, a wide range of sources has to be monitored in order to identify all

accessible data about the safety and performance of medical devices. The objective of

the OntoPMS project was to support PMS by a clever search strategy and the

possibility to create complex search queries by domain experts [10]. We developed the

Search Ontology (SON), a new approach for modelling search queries and to aid the

preparation of the document corpus. For the application of the SON in a particular

domain, it has to be extended by a Domain-specific Search Ontology (dSON) to model

domain-relevant search queries. In addition, we developed an Excel template to specify

the information required to create a dSON, which significantly simplifies the ontology

development by domain experts. Figure 2 presents a part of the template to model a

taxonomy of relevant search concepts described by various simple terms (labels).

Figure 2. OntoPMS template

For the automatic generation of a dSON (including complete queries) from the

Excel template, we implemented the Search Ontology Generator (SONG) based on the

SMOG. Using the SMOG, the implementation of reading and writing query

specifications has been significantly simplified.

4.2. Spreadsheet Entities

The SMOG supports four main types of spreadsheet entities: fields, tables, trees and

classes. The entities are marked with entity identifiers “Field:”, “Table:”, “TreeTable:”

and “Class:” followed by the entity name.

Fields are single name-value pairs, like “Risk Name = Infection_Risk_1” (Figure

1). Tables consist of a head row with column names and the record rows (e.g., Table:

Conditions, Figure 1). Trees represent hierarchical structures or taxonomies. Child

nodes are placed in the subsequent rows in the next column regarding to their parent.

For instance, the node “Clip” is a child node of the node “Medical_Device” and is

placed in the next row and next cell relative to its parent node (Figure 2). Additionally,

trees can be combined with tables in such a way that each table record contains certain

information about the corresponding tree node (e.g., simple terms/labels describing

search concepts, Figure 2). If multiple sheets have the same structure and are intended

to collect information about objects of the same class, each of these sheets is marked

with the entity identifier “Class:” followed by the class name. For example, various

risks are specified in the same manner, each risk in a separate sheet with the same

structure (Class: Risk, Figure 1). The SMOG uses this information to generate one

class (e.g., Risk) and multiple objects (one per sheet, e.g., Risk1, Risk2, etc.) instead of

one class per sheet.

Furthermore, it is possible to specify datatypes of fields or table values in the

corresponding title or head cells. Following datatypes are implemented: String, Integer,

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping 113

Double, Boolean and Date as well as the corresponding list types (with suffix L, e.g.,

StringL). The datatypes are specified in square brackets (e.g., [Integer]). For list types,

an additional separator character can be defined in angle brackets (e.g., [StringL] <,>

Figure 2). The default separator character is “|”. Alternatively, the datatypes (except

for list datatypes) can be defined by formatting cells using the spreadsheet program

(e.g., as number or date).

4.3. SMOG

By reverse engineering a spreadsheet schema (specified by a spreadsheet template,

annotated with entity identifiers), the SMOG generates the following types of classes:

workbook class, sheet class, table record class and tree node class (column: Class Type,

Table 1), which contain methods to access spreadsheet entities (col.: Access, Table 1).

A workbook class represents the whole spreadsheet and has methods to access

single sheets (sheet objects) or sheet classes (lists of sheet objects). E.g.,

getRiskList() (Table 1) returns all risk specifications (Figure 1) as objects of the

class Risk.

A sheet class implements methods to read and write entities (fields, tables and

trees) specified on a concrete sheet. Return value types and names of the generated

methods correspond with the defined datatypes and names of the spreadsheet entities.

For example, getRiskDescription() returns the value of the Field: Risk Description

(Figure 1).

Field access methods provide access to single field values; table access methods –

to table record objects; and tree access methods – to root tree node objects (Table 1).

Table record and tree node classes offer read and write methods for the single record

values similarly to the field access methods, as well as methods to delete or add records

and nodes. Additionally, tree node classes contain a getChildren() method to list all

specified child nodes as tree node objects. Methods for reading and writing list values

return lists of values of defined datatypes and require an array as input parameter (e.g.,

List<String> getSimpleTermsEn(), setSimpleTermsEn(String... values)).

The generated model follows a high abstraction level approach to access spreadsheet

entries. Starting with a workbook object, which is initialized with the spreadsheet file,

the sheet objects can be accessed via respectively named methods. For example, the

call wb.getRiskList() returns a list with objects of the class Risk representing the

specified risk types. Then, read and write methods for desired entities can be called.

The call risk.getRiskName() returns the name of the corresponding risk type (e.g.,

the string “Infection_Risk_1”, Figure 1). Tables and trees can be accessed in the same

way. For instance, risk.getConditions() returns a list of RiskConditionsRecord

objects, which can be iterated to access fields, such as cond.getConditionNr()

(Figure 1).

The SMOG is developed with Java 8 and is based on Apache POI 4.0.1 (Java API for

Microsoft Documents) [11]. The generator can be used either as an API call in the

source code to generate the model in the current workspace, or as a command line tool

to generate the model as a Maven artefact to be included as dependency into a Java

project.

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping114

Table 1. Generated methods (examples) based on the spreadsheet templates in Figure 1 and Figure 2

Figure 1

Class Type Method Access

Workbook List<Risk> getRiskList() Sheet
Sheet Optional<String> getRiskDescription() Field
Sheet void setRiskDescription(String value) Field
 void clearRiskDescription() Field
Sheet boolean isEmptyRiskDescription() Field
Sheet List<RiskConditionsRecord> getConditions() Table
Sheet void clearConditions() Table
Sheet boolean isEmptyConditions() Table
Sheet RiskConditionsRecord addRecordInConditions() Table
Sheet void deleteLastRecordInConditions() Table
Table Record Optional<String> getConditionNr() Record Field
Table Record void setConditionNr(String value) Record Field
Table Record void clearConditionNr() Record Field
Table Record boolean isEmptyConditionNr() Record Field
Table Record RiskConditionsRecord insertRecordAfter() Record Field
Table Record void deleteRecord() Record Field

Figure 2

Class Type Method Access

Workbook List<Facet> getFacetList() Sheet
Sheet List<FacetConceptTreeNode> getConceptTree() Tree
Sheet boolean isEmptyConceptTree() Tree
Sheet void clearConceptTree() Tree
Sheet FacetConceptTreeNode addRootNodeInConceptTree(String name) Tree
Tree Node List<String> getSimpleTermsEn() Record Field
Tree Node void setSimpleTermsEn(String... values) Record Field
Tree Node void clearSimpleTermsEn() Record Field
Tree Node boolean isEmptySimpleTermsEn() Record Field
Tree Node List<FacetConceptTreeNode> getChildren() Record Field
Tree Node FacetConceptTreeNode addChild(String name) Record Field
Tree Node void deleteNode() Record Field

5. Discussion

Developing convenient ways to extract data from spreadsheets is a subject of ongoing

research. Many scientists focused on syntactical analysis [12,13] and data validation

[14,15] of spreadsheets, whereas our aim was to support developers to access the data.

CData Software provides a non-free commercial driver package (ODBC Drivers)

[16], which features read and write access to many file formats and databases as well as

compatibility with extract, transform and load tools. In comparison to our solution, the

ODBC Driver for spreadsheets does not support multiple tables per sheet and other

structures like hierarchies or taxonomies. Data in sheets must be structured according

to a relational database and developers have to write structured query language (SQL)

queries to access and manipulate the data. The ODBC Driver provides the user with a

GUI based reverse engineering tool for manual mapping of spreadsheets, whereas

SMOG automatically tailors a ready to use API for any number of spreadsheets.

Hermans et al. [12] proposed an approach to generate Unified Modelling Language

class diagrams (UML) from spreadsheets automatically. The authors implemented a

C#.net based tool called Gyro and gave an outlook on the possible creation of a

domain-specific model, which was out of the scope of their publication. SMOG could

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping 115

also be extended to generate UML automatically, but there was no need for this feature

in the presented applications in Section 4.1. We may consider adding it in the future.

Engels et al. [15] used a top-down approach to build spreadsheet templates for

specific domains. The advantage is that these templates are more robust to input errors

from domain experts, but the approach cannot be used for existing spreadsheets and

there is no programmatic way to access the input data. A bottom-up approach like ours

is more viable in the life science domain.

Currently, the SMOG does not perform error checks during the input, which is a

limitation of our tool. Instead, exceptions are thrown at runtime if, for example, the

datatype of an entry conflicts with the specified one and they can be caught in the

application to prompt the user to correct the error. Nevertheless, all information

required for input checks is specified either as annotations of the template or using the

particular spreadsheet software, so that we could generate the checks (e.g., as Visual

Basic procedures for Excel) in the future. A further possible extension is an

implementation of plugins for IDEs to generate spreadsheet programming models at the

touch of a button.

6. Conclusion

In this paper we introduce a new tool to transform spreadsheet templates into Java-

based object models. The presented approach greatly simplifies the implementation of

spreadsheet access methods and enables efficient development of spreadsheet-based

applications. Our tool was successfully used in several projects under real world

conditions.

Conflict of Interest

The authors state that they have no conflict of interests.

References

[1] M.J. O’Connor, C. Halaschek-Wiener, and M.A. Musen, Mapping Master: A Flexible Approach for
Mapping Spreadsheets to OWL, in: P.F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J.Z. Pan,
I. Horrocks, and B. Glimm (Eds.), Semantic Web – ISWC 2010, Springer Berlin Heidelberg, 2010: pp.
194–208.

[2] A. Blfgeh, J. Warrender, C.M.U. Hilkens, and P. Lord, A document-centric approach for developing the
tolAPC ontology, J. Biomed. Semant. 8 (2017) 54.

[3] S. Jupp, M. Horridge, L. Iannone, J. Klein, S. Owen, J. Schanstra, K. Wolstencroft, and R. Stevens,
Populous: a tool for building OWL ontologies from templates, BMC Bioinformatics. 13 (2012) S5.

[4] K. Tahar, J. Xu, and H. Herre, Expert2OWL: A Methodology for Pattern-Based Ontology Development,
Stud. Health Technol. Inform. 243 (2017) 165–169.

[5] K. Tahar, M. Schaaf, F. Jahn, C. Kücherer, B. Paech, H. Herre, and A. Winter, An Approach to Support
Collaborative Ontology Construction, Stud. Health Technol. Inform. 228 (2016) 369–373.

[6] Hibernate ORM, (n.d.). http://hibernate.org/orm/.
[7] A. Uciteli, C. Beger, K. Rillich, F.A. Meineke, M. Loeffler, and H. Herre, Ontology-Based Modelling

of Web Content: Example Leipzig Health Atlas, in: T. Hoppe, B. Humm, and A. Reibold (Eds.),
Semantic Appl., Springer Vieweg, Berlin, Heidelberg, 2018: pp. 111–123.

[8] C. Beger, A. Uciteli, and H. Herre, Light-Weighted Automatic Import of Standardized Ontologies into
the Content Management System Drupal, Stud. Health Technol. Inform. 243 (2017) 170–174.

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping116

[9] A. Uciteli, J. Neumann, K. Tahar, K. Saleh, S. Stucke, S. Faulbrück-Röhr, A. Kaeding, M. Specht, T.
Schmidt, T. Neumuth, A. Besting, D. Stegemann, F. Portheine, and H. Herre, Ontology-based
specification, identification and analysis of perioperative risks, J. Biomed. Semant. 8 (2017) 36.

[10] A. Uciteli, S. Kropf, T. Weiland, S. Meese, K. Graef, S. Rohrer, M.O. Schurr, W. Bartussek, C. Goller,
P. Blohm, R. Seidel, C. Bayer, M. Kernenbach, K. Pfeiffer, W. Lauer, J.-U. Meyer, M. Witte, and H.
Herre, Ontology-based specification and generation of search queries for post-market surveillance, J.
Biomed. Semant. 10 (2019) 9.

[11] Apache POI, (n.d.). https://poi.apache.org/.
[12] F. Hermans, M. Pinzger, and A. van Deursen, Automatically Extracting Class Diagrams from

Spreadsheets, in: T. D’Hondt (Ed.), ECOOP 2010 – Object-Oriented Program., Springer Berlin
Heidelberg, 2010: pp. 52–75.

[13] L.V.S. Lakshmanan, S.N. Subramanian, N. Goyal, and R. Krishnamurthy, On querying spreadsheets, in:
Proc. 14th Int. Conf. Data Eng., 1998: pp. 134–141.

[14] R. Mittermeir, and M. Clermont, Finding high-level structures in spreadsheet programs, in: Ninth Work.
Conf. Reverse Eng. 2002 Proc., 2002: pp. 221–232.

[15] G. Engels, and M. Erwig, ClassSheets: Automatic Generation of Spreadsheet Applications from Object-
oriented Specifications, in: Proc. 20th IEEEACM Int. Conf. Autom. Softw. Eng., ACM, New York, NY,
USA, 2005: pp. 124–133.

[16] ODBC Drivers | CData Software, CData Softw. (n.d.). https://www.cdata.com/odbc/.

A. Uciteli et al. / SMOG: A Lightweight Tool for Object-Spreadsheet Mapping 117

